Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > renegcld | GIF version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renegcl 8192 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2146 ℝcr 7785 -cneg 8103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-setind 4530 ax-resscn 7878 ax-1cn 7879 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-distr 7890 ax-i2m1 7891 ax-0id 7894 ax-rnegex 7895 ax-cnre 7897 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-sub 8104 df-neg 8105 |
This theorem is referenced by: eqord2 8415 possumd 8500 reapmul1 8526 reapneg 8528 apneg 8542 mulext1 8543 recgt0 8780 prodgt0 8782 prodge0 8784 negiso 8885 nnnegz 9229 peano2z 9262 nn0negleid 9294 difgtsumgt 9295 supinfneg 9568 infsupneg 9569 monoord2 10447 recj 10844 reneg 10845 imcj 10852 imneg 10853 cjap 10883 resqrexlemcalc3 10993 resqrexlemgt0 10997 abslt 11065 absle 11066 minmax 11206 mincl 11207 lemininf 11210 ltmininf 11211 bdtri 11216 xrmaxaddlem 11236 xrminrpcl 11250 climge0 11301 cos12dec 11743 absefib 11746 efieq1re 11747 dvdslelemd 11816 infssuzex 11917 zsupssdc 11922 mulgnegnn 12854 ivthdec 13693 coseq0negpitopi 13828 cosq34lt1 13842 rpabscxpbnd 13930 lgsneg 13996 lgsdilem 13999 |
Copyright terms: Public domain | W3C validator |