| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcld | GIF version | ||
| Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | renegcl 8368 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2178 ℝcr 7959 -cneg 8279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 ax-resscn 8052 ax-1cn 8053 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-sub 8280 df-neg 8281 |
| This theorem is referenced by: eqord2 8592 possumd 8677 reapmul1 8703 reapneg 8705 apneg 8719 mulext1 8720 recgt0 8958 prodgt0 8960 prodge0 8962 negiso 9063 nnnegz 9410 peano2z 9443 nn0negleid 9476 difgtsumgt 9477 supinfneg 9751 infsupneg 9752 infssuzex 10413 zsupssdc 10418 monoord2 10668 recj 11293 reneg 11294 imcj 11301 imneg 11302 cjap 11332 resqrexlemcalc3 11442 resqrexlemgt0 11446 abslt 11514 absle 11515 minmax 11656 mincl 11657 lemininf 11660 ltmininf 11661 bdtri 11666 xrmaxaddlem 11686 xrminrpcl 11700 climge0 11751 cos12dec 12194 absefib 12197 efieq1re 12198 dvdslelemd 12269 bitscmp 12384 bitsinv1lem 12387 4sqexercise2 12837 4sqlemsdc 12838 mulgnegnn 13583 ivthdec 15231 coseq0negpitopi 15423 cosq34lt1 15437 rpabscxpbnd 15527 lgsneg 15616 lgsdilem 15619 lgseisenlem1 15662 |
| Copyright terms: Public domain | W3C validator |