ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcld GIF version

Theorem renegcld 8311
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
renegcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renegcld (𝜑 → -𝐴 ∈ ℝ)

Proof of Theorem renegcld
StepHypRef Expression
1 renegcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renegcl 8192 . 2 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
31, 2syl 14 1 (𝜑 → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2146  cr 7785  -cneg 8103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-setind 4530  ax-resscn 7878  ax-1cn 7879  ax-icn 7881  ax-addcl 7882  ax-addrcl 7883  ax-mulcl 7884  ax-addcom 7886  ax-addass 7888  ax-distr 7890  ax-i2m1 7891  ax-0id 7894  ax-rnegex 7895  ax-cnre 7897
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-iota 5170  df-fun 5210  df-fv 5216  df-riota 5821  df-ov 5868  df-oprab 5869  df-mpo 5870  df-sub 8104  df-neg 8105
This theorem is referenced by:  eqord2  8415  possumd  8500  reapmul1  8526  reapneg  8528  apneg  8542  mulext1  8543  recgt0  8780  prodgt0  8782  prodge0  8784  negiso  8885  nnnegz  9229  peano2z  9262  nn0negleid  9294  difgtsumgt  9295  supinfneg  9568  infsupneg  9569  monoord2  10447  recj  10844  reneg  10845  imcj  10852  imneg  10853  cjap  10883  resqrexlemcalc3  10993  resqrexlemgt0  10997  abslt  11065  absle  11066  minmax  11206  mincl  11207  lemininf  11210  ltmininf  11211  bdtri  11216  xrmaxaddlem  11236  xrminrpcl  11250  climge0  11301  cos12dec  11743  absefib  11746  efieq1re  11747  dvdslelemd  11816  infssuzex  11917  zsupssdc  11922  mulgnegnn  12854  ivthdec  13693  coseq0negpitopi  13828  cosq34lt1  13842  rpabscxpbnd  13930  lgsneg  13996  lgsdilem  13999
  Copyright terms: Public domain W3C validator