| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > renegcld | GIF version | ||
| Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| Ref | Expression |
|---|---|
| renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | renegcl 8335 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2176 ℝcr 7926 -cneg 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-setind 4586 ax-resscn 8019 ax-1cn 8020 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-addcom 8027 ax-addass 8029 ax-distr 8031 ax-i2m1 8032 ax-0id 8035 ax-rnegex 8036 ax-cnre 8038 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-opab 4107 df-id 4341 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-iota 5233 df-fun 5274 df-fv 5280 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-sub 8247 df-neg 8248 |
| This theorem is referenced by: eqord2 8559 possumd 8644 reapmul1 8670 reapneg 8672 apneg 8686 mulext1 8687 recgt0 8925 prodgt0 8927 prodge0 8929 negiso 9030 nnnegz 9377 peano2z 9410 nn0negleid 9443 difgtsumgt 9444 supinfneg 9718 infsupneg 9719 infssuzex 10378 zsupssdc 10383 monoord2 10633 recj 11211 reneg 11212 imcj 11219 imneg 11220 cjap 11250 resqrexlemcalc3 11360 resqrexlemgt0 11364 abslt 11432 absle 11433 minmax 11574 mincl 11575 lemininf 11578 ltmininf 11579 bdtri 11584 xrmaxaddlem 11604 xrminrpcl 11618 climge0 11669 cos12dec 12112 absefib 12115 efieq1re 12116 dvdslelemd 12187 bitscmp 12302 bitsinv1lem 12305 4sqexercise2 12755 4sqlemsdc 12756 mulgnegnn 13501 ivthdec 15149 coseq0negpitopi 15341 cosq34lt1 15355 rpabscxpbnd 15445 lgsneg 15534 lgsdilem 15537 lgseisenlem1 15580 |
| Copyright terms: Public domain | W3C validator |