![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renegcld | GIF version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renegcl 8280 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 ℝcr 7871 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-setind 4569 ax-resscn 7964 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-iota 5215 df-fun 5256 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-sub 8192 df-neg 8193 |
This theorem is referenced by: eqord2 8503 possumd 8588 reapmul1 8614 reapneg 8616 apneg 8630 mulext1 8631 recgt0 8869 prodgt0 8871 prodge0 8873 negiso 8974 nnnegz 9320 peano2z 9353 nn0negleid 9385 difgtsumgt 9386 supinfneg 9660 infsupneg 9661 monoord2 10557 recj 11011 reneg 11012 imcj 11019 imneg 11020 cjap 11050 resqrexlemcalc3 11160 resqrexlemgt0 11164 abslt 11232 absle 11233 minmax 11373 mincl 11374 lemininf 11377 ltmininf 11378 bdtri 11383 xrmaxaddlem 11403 xrminrpcl 11417 climge0 11468 cos12dec 11911 absefib 11914 efieq1re 11915 dvdslelemd 11985 infssuzex 12086 zsupssdc 12091 4sqexercise2 12537 4sqlemsdc 12538 mulgnegnn 13202 ivthdec 14798 coseq0negpitopi 14971 cosq34lt1 14985 rpabscxpbnd 15073 lgsneg 15140 lgsdilem 15143 lgseisenlem1 15186 |
Copyright terms: Public domain | W3C validator |