![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > renegcld | GIF version |
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
renegcld.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
renegcld | ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | renegcld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | renegcl 7946 | . 2 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → -𝐴 ∈ ℝ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 1463 ℝcr 7546 -cneg 7857 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 586 ax-in2 587 ax-io 681 ax-5 1406 ax-7 1407 ax-gen 1408 ax-ie1 1452 ax-ie2 1453 ax-8 1465 ax-10 1466 ax-11 1467 ax-i12 1468 ax-bndl 1469 ax-4 1470 ax-14 1475 ax-17 1489 ax-i9 1493 ax-ial 1497 ax-i5r 1498 ax-ext 2097 ax-sep 4006 ax-pow 4058 ax-pr 4091 ax-setind 4412 ax-resscn 7637 ax-1cn 7638 ax-icn 7640 ax-addcl 7641 ax-addrcl 7642 ax-mulcl 7643 ax-addcom 7645 ax-addass 7647 ax-distr 7649 ax-i2m1 7650 ax-0id 7653 ax-rnegex 7654 ax-cnre 7656 |
This theorem depends on definitions: df-bi 116 df-3an 947 df-tru 1317 df-fal 1320 df-nf 1420 df-sb 1719 df-eu 1978 df-mo 1979 df-clab 2102 df-cleq 2108 df-clel 2111 df-nfc 2244 df-ne 2283 df-ral 2395 df-rex 2396 df-reu 2397 df-rab 2399 df-v 2659 df-sbc 2879 df-dif 3039 df-un 3041 df-in 3043 df-ss 3050 df-pw 3478 df-sn 3499 df-pr 3500 df-op 3502 df-uni 3703 df-br 3896 df-opab 3950 df-id 4175 df-xp 4505 df-rel 4506 df-cnv 4507 df-co 4508 df-dm 4509 df-iota 5046 df-fun 5083 df-fv 5089 df-riota 5684 df-ov 5731 df-oprab 5732 df-mpo 5733 df-sub 7858 df-neg 7859 |
This theorem is referenced by: eqord2 8165 possumd 8249 reapmul1 8275 reapneg 8277 apneg 8291 mulext1 8292 recgt0 8518 prodgt0 8520 prodge0 8522 negiso 8623 nnnegz 8961 peano2z 8994 supinfneg 9292 infsupneg 9293 monoord2 10143 recj 10532 reneg 10533 imcj 10540 imneg 10541 cjap 10571 resqrexlemcalc3 10680 resqrexlemgt0 10684 abslt 10752 absle 10753 minmax 10893 mincl 10894 lemininf 10897 ltmininf 10898 bdtri 10903 xrmaxaddlem 10921 xrminrpcl 10935 climge0 10986 absefib 11327 efieq1re 11328 dvdslelemd 11389 infssuzex 11490 |
Copyright terms: Public domain | W3C validator |