ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  renegcld GIF version

Theorem renegcld 8165
Description: Closure law for negative of reals. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
renegcld.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
renegcld (𝜑 → -𝐴 ∈ ℝ)

Proof of Theorem renegcld
StepHypRef Expression
1 renegcld.1 . 2 (𝜑𝐴 ∈ ℝ)
2 renegcl 8046 . 2 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
31, 2syl 14 1 (𝜑 → -𝐴 ∈ ℝ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1481  cr 7642  -cneg 7957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4053  ax-pow 4105  ax-pr 4138  ax-setind 4459  ax-resscn 7735  ax-1cn 7736  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-addcom 7743  ax-addass 7745  ax-distr 7747  ax-i2m1 7748  ax-0id 7751  ax-rnegex 7752  ax-cnre 7754
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2913  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-br 3937  df-opab 3997  df-id 4222  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-iota 5095  df-fun 5132  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-sub 7958  df-neg 7959
This theorem is referenced by:  eqord2  8269  possumd  8354  reapmul1  8380  reapneg  8382  apneg  8396  mulext1  8397  recgt0  8631  prodgt0  8633  prodge0  8635  negiso  8736  nnnegz  9080  peano2z  9113  supinfneg  9416  infsupneg  9417  monoord2  10280  recj  10670  reneg  10671  imcj  10678  imneg  10679  cjap  10709  resqrexlemcalc3  10819  resqrexlemgt0  10823  abslt  10891  absle  10892  minmax  11032  mincl  11033  lemininf  11036  ltmininf  11037  bdtri  11042  xrmaxaddlem  11060  xrminrpcl  11074  climge0  11125  cos12dec  11508  absefib  11511  efieq1re  11512  dvdslelemd  11575  infssuzex  11676  ivthdec  12828  coseq0negpitopi  12963  cosq34lt1  12977  rpabscxpbnd  13065
  Copyright terms: Public domain W3C validator