| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infidc | GIF version | ||
| Description: The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.) |
| Ref | Expression |
|---|---|
| infidc | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 ∈ Fin) | |
| 2 | inss1 3394 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ⊆ 𝐴) |
| 4 | elin 3357 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | baibr 922 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 6 | 5 | dcbid 840 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (DECID 𝑥 ∈ 𝐵 ↔ DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 7 | 6 | biimpd 144 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (DECID 𝑥 ∈ 𝐵 → DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (DECID 𝑥 ∈ 𝐵 → DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 9 | 8 | ralimdva 2574 | . . 3 ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵 → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 10 | 9 | imp 124 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵)) |
| 11 | ssfidc 7041 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐴 ∩ 𝐵) ∈ Fin) | |
| 12 | 1, 3, 10, 11 | syl3anc 1250 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 836 ∈ wcel 2177 ∀wral 2485 ∩ cin 3166 ⊆ wss 3167 Fincfn 6834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-iord 4417 df-on 4419 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-1o 6509 df-er 6627 df-en 6835 df-fin 6837 |
| This theorem is referenced by: 4sqleminfi 12764 |
| Copyright terms: Public domain | W3C validator |