| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > infidc | GIF version | ||
| Description: The intersection of two sets is finite if one of them is and the other is decidable. (Contributed by Jim Kingdon, 24-May-2025.) |
| Ref | Expression |
|---|---|
| infidc | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → 𝐴 ∈ Fin) | |
| 2 | inss1 3404 | . . 3 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 3 | 2 | a1i 9 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ⊆ 𝐴) |
| 4 | elin 3367 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | baibr 924 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 6 | 5 | dcbid 842 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → (DECID 𝑥 ∈ 𝐵 ↔ DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 7 | 6 | biimpd 144 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (DECID 𝑥 ∈ 𝐵 → DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 8 | 7 | adantl 277 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ∈ 𝐴) → (DECID 𝑥 ∈ 𝐵 → DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 9 | 8 | ralimdva 2577 | . . 3 ⊢ (𝐴 ∈ Fin → (∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵 → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵))) |
| 10 | 9 | imp 124 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵)) |
| 11 | ssfidc 7067 | . 2 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∩ 𝐵) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ (𝐴 ∩ 𝐵)) → (𝐴 ∩ 𝐵) ∈ Fin) | |
| 12 | 1, 3, 10, 11 | syl3anc 1252 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ 𝐵) → (𝐴 ∩ 𝐵) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 838 ∈ wcel 2180 ∀wral 2488 ∩ cin 3176 ⊆ wss 3177 Fincfn 6857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-nul 4189 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-iinf 4657 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-tr 4162 df-id 4361 df-iord 4434 df-on 4436 df-suc 4439 df-iom 4660 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-1o 6532 df-er 6650 df-en 6858 df-fin 6860 |
| This theorem is referenced by: 4sqleminfi 12886 |
| Copyright terms: Public domain | W3C validator |