| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqleminfi | GIF version | ||
| Description: Lemma for 4sq 12579. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
| Ref | Expression |
|---|---|
| 4sqlemafi.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4sqlemafi.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4sqlemafi.a | ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
| 4sqlemffi.f | ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
| Ref | Expression |
|---|---|
| 4sqleminfi | ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlemafi.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 4sqlemafi.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 3 | 4sqlemafi.a | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} | |
| 4 | 1, 2, 3 | 4sqlemafi 12564 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) |
| 5 | simpr 110 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃)) | |
| 6 | elfzelz 10100 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) | |
| 7 | 6 | ad2antlr 489 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑚 ∈ ℤ) |
| 8 | zsqcl 10702 | . . . . . . . . . . . . . . 15 ⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ) | |
| 9 | 7, 8 | syl 14 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → (𝑚↑2) ∈ ℤ) |
| 10 | 2 | ad2antrr 488 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑃 ∈ ℕ) |
| 11 | 9, 10 | zmodcld 10437 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0) |
| 12 | 11 | nn0zd 9446 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ) |
| 13 | 5, 12 | eqeltrd 2273 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ) |
| 14 | 13 | rexlimdva2 2617 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ)) |
| 15 | 14 | abssdv 3257 | . . . . . . . . 9 ⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ) |
| 16 | 3, 15 | eqsstrid 3229 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 17 | 16 | sselda 3183 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
| 18 | 2 | ad2antrr 488 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℕ) |
| 19 | 18 | nnzd 9447 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℤ) |
| 20 | peano2zm 9364 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ) | |
| 21 | 19, 20 | syl 14 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → (𝑃 − 1) ∈ ℤ) |
| 22 | 16 | sselda 3183 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
| 23 | 22 | adantlr 477 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
| 24 | 21, 23 | zsubcld 9453 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ) |
| 25 | zdceq 9401 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) − 𝑣) ∈ ℤ) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) | |
| 26 | 17, 24, 25 | syl2an2r 595 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 27 | 26 | ralrimiva 2570 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 28 | finexdc 6963 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) | |
| 29 | 4, 27, 28 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 30 | 4sqlemffi.f | . . . . . . 7 ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) | |
| 31 | 30 | elrnmpt 4915 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣))) |
| 32 | 31 | elv 2767 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 33 | 32 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 ∈ ran 𝐹 ↔ DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 34 | 29, 33 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ ran 𝐹) |
| 35 | 34 | ralrimiva 2570 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) |
| 36 | infidc 7000 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin) | |
| 37 | 4, 35, 36 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 ∃wrex 2476 Vcvv 2763 ∩ cin 3156 ↦ cmpt 4094 ran crn 4664 (class class class)co 5922 Fincfn 6799 0cc0 7879 1c1 7880 − cmin 8197 ℕcn 8990 2c2 9041 ℤcz 9326 ...cfz 10083 mod cmo 10414 ↑cexp 10630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-1o 6474 df-er 6592 df-en 6800 df-fin 6802 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 |
| This theorem is referenced by: 4sqlem11 12570 4sqlem12 12571 |
| Copyright terms: Public domain | W3C validator |