| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 4sqleminfi | GIF version | ||
| Description: Lemma for 4sq 12933. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
| Ref | Expression |
|---|---|
| 4sqlemafi.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 4sqlemafi.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
| 4sqlemafi.a | ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
| 4sqlemffi.f | ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
| Ref | Expression |
|---|---|
| 4sqleminfi | ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4sqlemafi.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 2 | 4sqlemafi.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
| 3 | 4sqlemafi.a | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} | |
| 4 | 1, 2, 3 | 4sqlemafi 12918 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) |
| 5 | simpr 110 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃)) | |
| 6 | elfzelz 10221 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) | |
| 7 | 6 | ad2antlr 489 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑚 ∈ ℤ) |
| 8 | zsqcl 10832 | . . . . . . . . . . . . . . 15 ⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ) | |
| 9 | 7, 8 | syl 14 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → (𝑚↑2) ∈ ℤ) |
| 10 | 2 | ad2antrr 488 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑃 ∈ ℕ) |
| 11 | 9, 10 | zmodcld 10567 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0) |
| 12 | 11 | nn0zd 9567 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ) |
| 13 | 5, 12 | eqeltrd 2306 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ) |
| 14 | 13 | rexlimdva2 2651 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ)) |
| 15 | 14 | abssdv 3298 | . . . . . . . . 9 ⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ) |
| 16 | 3, 15 | eqsstrid 3270 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
| 17 | 16 | sselda 3224 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
| 18 | 2 | ad2antrr 488 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℕ) |
| 19 | 18 | nnzd 9568 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℤ) |
| 20 | peano2zm 9484 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ) | |
| 21 | 19, 20 | syl 14 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → (𝑃 − 1) ∈ ℤ) |
| 22 | 16 | sselda 3224 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
| 23 | 22 | adantlr 477 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
| 24 | 21, 23 | zsubcld 9574 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ) |
| 25 | zdceq 9522 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) − 𝑣) ∈ ℤ) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) | |
| 26 | 17, 24, 25 | syl2an2r 597 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 27 | 26 | ralrimiva 2603 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 28 | finexdc 7064 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) | |
| 29 | 4, 27, 28 | syl2an2r 597 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 30 | 4sqlemffi.f | . . . . . . 7 ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) | |
| 31 | 30 | elrnmpt 4973 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣))) |
| 32 | 31 | elv 2803 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 33 | 32 | dcbii 845 | . . . 4 ⊢ (DECID 𝑥 ∈ ran 𝐹 ↔ DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
| 34 | 29, 33 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ ran 𝐹) |
| 35 | 34 | ralrimiva 2603 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) |
| 36 | infidc 7101 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin) | |
| 37 | 4, 35, 36 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 839 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 ∃wrex 2509 Vcvv 2799 ∩ cin 3196 ↦ cmpt 4145 ran crn 4720 (class class class)co 6001 Fincfn 6887 0cc0 7999 1c1 8000 − cmin 8317 ℕcn 9110 2c2 9161 ℤcz 9446 ...cfz 10204 mod cmo 10544 ↑cexp 10760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-frec 6537 df-1o 6562 df-er 6680 df-en 6888 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-fl 10490 df-mod 10545 df-seqfrec 10670 df-exp 10761 |
| This theorem is referenced by: 4sqlem11 12924 4sqlem12 12925 |
| Copyright terms: Public domain | W3C validator |