ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqleminfi GIF version

Theorem 4sqleminfi 12440
Description: Lemma for 4sq 12453. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.)
Hypotheses
Ref Expression
4sqlemafi.n (𝜑𝑁 ∈ ℕ)
4sqlemafi.p (𝜑𝑃 ∈ ℕ)
4sqlemafi.a 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
4sqlemffi.f 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
Assertion
Ref Expression
4sqleminfi (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin)
Distinct variable groups:   𝑚,𝑁,𝑢   𝑃,𝑚,𝑢   𝜑,𝑚,𝑢   𝑣,𝐴   𝜑,𝑣
Allowed substitution hints:   𝐴(𝑢,𝑚)   𝑃(𝑣)   𝐹(𝑣,𝑢,𝑚)   𝑁(𝑣)

Proof of Theorem 4sqleminfi
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 4sqlemafi.n . . 3 (𝜑𝑁 ∈ ℕ)
2 4sqlemafi.p . . 3 (𝜑𝑃 ∈ ℕ)
3 4sqlemafi.a . . 3 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)}
41, 2, 34sqlemafi 12438 . 2 (𝜑𝐴 ∈ Fin)
5 simpr 110 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃))
6 elfzelz 10061 . . . . . . . . . . . . . . . 16 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ)
76ad2antlr 489 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑚 ∈ ℤ)
8 zsqcl 10631 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ)
97, 8syl 14 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → (𝑚↑2) ∈ ℤ)
102ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑃 ∈ ℕ)
119, 10zmodcld 10382 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0)
1211nn0zd 9408 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ)
135, 12eqeltrd 2266 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ)
1413rexlimdva2 2610 . . . . . . . . . 10 (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ))
1514abssdv 3244 . . . . . . . . 9 (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ)
163, 15eqsstrid 3216 . . . . . . . 8 (𝜑𝐴 ⊆ ℤ)
1716sselda 3170 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥 ∈ ℤ)
182ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → 𝑃 ∈ ℕ)
1918nnzd 9409 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → 𝑃 ∈ ℤ)
20 peano2zm 9326 . . . . . . . . 9 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
2119, 20syl 14 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → (𝑃 − 1) ∈ ℤ)
2216sselda 3170 . . . . . . . . 9 ((𝜑𝑣𝐴) → 𝑣 ∈ ℤ)
2322adantlr 477 . . . . . . . 8 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → 𝑣 ∈ ℤ)
2421, 23zsubcld 9415 . . . . . . 7 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ)
25 zdceq 9363 . . . . . . 7 ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) − 𝑣) ∈ ℤ) → DECID 𝑥 = ((𝑃 − 1) − 𝑣))
2617, 24, 25syl2an2r 595 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑣𝐴) → DECID 𝑥 = ((𝑃 − 1) − 𝑣))
2726ralrimiva 2563 . . . . 5 ((𝜑𝑥𝐴) → ∀𝑣𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣))
28 finexdc 6934 . . . . 5 ((𝐴 ∈ Fin ∧ ∀𝑣𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) → DECID𝑣𝐴 𝑥 = ((𝑃 − 1) − 𝑣))
294, 27, 28syl2an2r 595 . . . 4 ((𝜑𝑥𝐴) → DECID𝑣𝐴 𝑥 = ((𝑃 − 1) − 𝑣))
30 4sqlemffi.f . . . . . . 7 𝐹 = (𝑣𝐴 ↦ ((𝑃 − 1) − 𝑣))
3130elrnmpt 4897 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑣𝐴 𝑥 = ((𝑃 − 1) − 𝑣)))
3231elv 2756 . . . . 5 (𝑥 ∈ ran 𝐹 ↔ ∃𝑣𝐴 𝑥 = ((𝑃 − 1) − 𝑣))
3332dcbii 841 . . . 4 (DECID 𝑥 ∈ ran 𝐹DECID𝑣𝐴 𝑥 = ((𝑃 − 1) − 𝑣))
3429, 33sylibr 134 . . 3 ((𝜑𝑥𝐴) → DECID 𝑥 ∈ ran 𝐹)
3534ralrimiva 2563 . 2 (𝜑 → ∀𝑥𝐴 DECID 𝑥 ∈ ran 𝐹)
36 infidc 6968 . 2 ((𝐴 ∈ Fin ∧ ∀𝑥𝐴 DECID 𝑥 ∈ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin)
374, 35, 36syl2anc 411 1 (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 835   = wceq 1364  wcel 2160  {cab 2175  wral 2468  wrex 2469  Vcvv 2752  cin 3143  cmpt 4082  ran crn 4648  (class class class)co 5900  Fincfn 6770  0cc0 7846  1c1 7847  cmin 8163  cn 8954  2c2 9005  cz 9288  ...cfz 10044   mod cmo 10359  cexp 10559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-nul 4147  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-iinf 4608  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-mulrcl 7945  ax-addcom 7946  ax-mulcom 7947  ax-addass 7948  ax-mulass 7949  ax-distr 7950  ax-i2m1 7951  ax-0lt1 7952  ax-1rid 7953  ax-0id 7954  ax-rnegex 7955  ax-precex 7956  ax-cnre 7957  ax-pre-ltirr 7958  ax-pre-ltwlin 7959  ax-pre-lttrn 7960  ax-pre-apti 7961  ax-pre-ltadd 7962  ax-pre-mulgt0 7963  ax-pre-mulext 7964  ax-arch 7965
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3595  df-sn 3616  df-pr 3617  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-tr 4120  df-id 4314  df-po 4317  df-iso 4318  df-iord 4387  df-on 4389  df-ilim 4390  df-suc 4392  df-iom 4611  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-1st 6169  df-2nd 6170  df-recs 6334  df-frec 6420  df-1o 6445  df-er 6563  df-en 6771  df-fin 6773  df-pnf 8029  df-mnf 8030  df-xr 8031  df-ltxr 8032  df-le 8033  df-sub 8165  df-neg 8166  df-reap 8567  df-ap 8574  df-div 8665  df-inn 8955  df-2 9013  df-n0 9212  df-z 9289  df-uz 9564  df-q 9656  df-rp 9690  df-fz 10045  df-fzo 10179  df-fl 10307  df-mod 10360  df-seqfrec 10485  df-exp 10560
This theorem is referenced by:  4sqlem11  12444  4sqlem12  12445
  Copyright terms: Public domain W3C validator