![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqleminfi | GIF version |
Description: Lemma for 4sq 12453. 𝐴 ∩ ran 𝐹 is finite. (Contributed by Jim Kingdon, 24-May-2025.) |
Ref | Expression |
---|---|
4sqlemafi.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
4sqlemafi.p | ⊢ (𝜑 → 𝑃 ∈ ℕ) |
4sqlemafi.a | ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} |
4sqlemffi.f | ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) |
Ref | Expression |
---|---|
4sqleminfi | ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlemafi.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
2 | 4sqlemafi.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ℕ) | |
3 | 4sqlemafi.a | . . 3 ⊢ 𝐴 = {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} | |
4 | 1, 2, 3 | 4sqlemafi 12438 | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) |
5 | simpr 110 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 = ((𝑚↑2) mod 𝑃)) | |
6 | elfzelz 10061 | . . . . . . . . . . . . . . . 16 ⊢ (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℤ) | |
7 | 6 | ad2antlr 489 | . . . . . . . . . . . . . . 15 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑚 ∈ ℤ) |
8 | zsqcl 10631 | . . . . . . . . . . . . . . 15 ⊢ (𝑚 ∈ ℤ → (𝑚↑2) ∈ ℤ) | |
9 | 7, 8 | syl 14 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → (𝑚↑2) ∈ ℤ) |
10 | 2 | ad2antrr 488 | . . . . . . . . . . . . . 14 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑃 ∈ ℕ) |
11 | 9, 10 | zmodcld 10382 | . . . . . . . . . . . . 13 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℕ0) |
12 | 11 | nn0zd 9408 | . . . . . . . . . . . 12 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → ((𝑚↑2) mod 𝑃) ∈ ℤ) |
13 | 5, 12 | eqeltrd 2266 | . . . . . . . . . . 11 ⊢ (((𝜑 ∧ 𝑚 ∈ (0...𝑁)) ∧ 𝑢 = ((𝑚↑2) mod 𝑃)) → 𝑢 ∈ ℤ) |
14 | 13 | rexlimdva2 2610 | . . . . . . . . . 10 ⊢ (𝜑 → (∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃) → 𝑢 ∈ ℤ)) |
15 | 14 | abssdv 3244 | . . . . . . . . 9 ⊢ (𝜑 → {𝑢 ∣ ∃𝑚 ∈ (0...𝑁)𝑢 = ((𝑚↑2) mod 𝑃)} ⊆ ℤ) |
16 | 3, 15 | eqsstrid 3216 | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ⊆ ℤ) |
17 | 16 | sselda 3170 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℤ) |
18 | 2 | ad2antrr 488 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℕ) |
19 | 18 | nnzd 9409 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑃 ∈ ℤ) |
20 | peano2zm 9326 | . . . . . . . . 9 ⊢ (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ) | |
21 | 19, 20 | syl 14 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → (𝑃 − 1) ∈ ℤ) |
22 | 16 | sselda 3170 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
23 | 22 | adantlr 477 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → 𝑣 ∈ ℤ) |
24 | 21, 23 | zsubcld 9415 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → ((𝑃 − 1) − 𝑣) ∈ ℤ) |
25 | zdceq 9363 | . . . . . . 7 ⊢ ((𝑥 ∈ ℤ ∧ ((𝑃 − 1) − 𝑣) ∈ ℤ) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) | |
26 | 17, 24, 25 | syl2an2r 595 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝑣 ∈ 𝐴) → DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
27 | 26 | ralrimiva 2563 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) |
28 | finexdc 6934 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑣 ∈ 𝐴 DECID 𝑥 = ((𝑃 − 1) − 𝑣)) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) | |
29 | 4, 27, 28 | syl2an2r 595 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
30 | 4sqlemffi.f | . . . . . . 7 ⊢ 𝐹 = (𝑣 ∈ 𝐴 ↦ ((𝑃 − 1) − 𝑣)) | |
31 | 30 | elrnmpt 4897 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣))) |
32 | 31 | elv 2756 | . . . . 5 ⊢ (𝑥 ∈ ran 𝐹 ↔ ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
33 | 32 | dcbii 841 | . . . 4 ⊢ (DECID 𝑥 ∈ ran 𝐹 ↔ DECID ∃𝑣 ∈ 𝐴 𝑥 = ((𝑃 − 1) − 𝑣)) |
34 | 29, 33 | sylibr 134 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → DECID 𝑥 ∈ ran 𝐹) |
35 | 34 | ralrimiva 2563 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) |
36 | infidc 6968 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 DECID 𝑥 ∈ ran 𝐹) → (𝐴 ∩ ran 𝐹) ∈ Fin) | |
37 | 4, 35, 36 | syl2anc 411 | 1 ⊢ (𝜑 → (𝐴 ∩ ran 𝐹) ∈ Fin) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∈ wcel 2160 {cab 2175 ∀wral 2468 ∃wrex 2469 Vcvv 2752 ∩ cin 3143 ↦ cmpt 4082 ran crn 4648 (class class class)co 5900 Fincfn 6770 0cc0 7846 1c1 7847 − cmin 8163 ℕcn 8954 2c2 9005 ℤcz 9288 ...cfz 10044 mod cmo 10359 ↑cexp 10559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-nul 4147 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-iinf 4608 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-mulrcl 7945 ax-addcom 7946 ax-mulcom 7947 ax-addass 7948 ax-mulass 7949 ax-distr 7950 ax-i2m1 7951 ax-0lt1 7952 ax-1rid 7953 ax-0id 7954 ax-rnegex 7955 ax-precex 7956 ax-cnre 7957 ax-pre-ltirr 7958 ax-pre-ltwlin 7959 ax-pre-lttrn 7960 ax-pre-apti 7961 ax-pre-ltadd 7962 ax-pre-mulgt0 7963 ax-pre-mulext 7964 ax-arch 7965 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-if 3550 df-pw 3595 df-sn 3616 df-pr 3617 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-tr 4120 df-id 4314 df-po 4317 df-iso 4318 df-iord 4387 df-on 4389 df-ilim 4390 df-suc 4392 df-iom 4611 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-1st 6169 df-2nd 6170 df-recs 6334 df-frec 6420 df-1o 6445 df-er 6563 df-en 6771 df-fin 6773 df-pnf 8029 df-mnf 8030 df-xr 8031 df-ltxr 8032 df-le 8033 df-sub 8165 df-neg 8166 df-reap 8567 df-ap 8574 df-div 8665 df-inn 8955 df-2 9013 df-n0 9212 df-z 9289 df-uz 9564 df-q 9656 df-rp 9690 df-fz 10045 df-fzo 10179 df-fl 10307 df-mod 10360 df-seqfrec 10485 df-exp 10560 |
This theorem is referenced by: 4sqlem11 12444 4sqlem12 12445 |
Copyright terms: Public domain | W3C validator |