ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0neg1d GIF version

Theorem lt0neg1d 8434
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lt0neg1d (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))

Proof of Theorem lt0neg1d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt0neg1 8387 . 2 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
31, 2syl 14 1 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wcel 2141   class class class wbr 3989  cr 7773  0cc0 7774   < clt 7954  -cneg 8091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-iota 5160  df-fun 5200  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-ltxr 7959  df-sub 8092  df-neg 8093
This theorem is referenced by:  reapmul1  8514  recgt0  8766  prodgt0  8768  prodge0  8770  elnn0z  9225  ztri3or0  9254  exp3val  10478  expnegap0  10484  resqrexlemgt0  10984  climge0  11288  zdvdsdc  11774  divalglemex  11881  divalglemeuneg  11882  sincosq4sgn  13544  sinq34lt0t  13546  coseq0negpitopi  13551  lgsdilem  13722
  Copyright terms: Public domain W3C validator