ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lt0neg1d GIF version

Theorem lt0neg1d 8588
Description: Comparison of a number and its negative to zero. Theorem I.23 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
lt0neg1d (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))

Proof of Theorem lt0neg1d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 lt0neg1 8541 . 2 (𝐴 ∈ ℝ → (𝐴 < 0 ↔ 0 < -𝐴))
31, 2syl 14 1 (𝜑 → (𝐴 < 0 ↔ 0 < -𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2176   class class class wbr 4044  cr 7924  0cc0 7925   < clt 8107  -cneg 8244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-sub 8245  df-neg 8246
This theorem is referenced by:  reapmul1  8668  recgt0  8923  prodgt0  8925  prodge0  8927  elnn0z  9385  ztri3or0  9414  exp3val  10686  expnegap0  10692  resqrexlemgt0  11331  climge0  11636  zdvdsdc  12123  divalglemex  12233  divalglemeuneg  12234  bitsfzo  12266  mulgval  13458  mulgfng  13460  subgmulg  13524  sincosq4sgn  15301  sinq34lt0t  15303  coseq0negpitopi  15308  lgsdilem  15504
  Copyright terms: Public domain W3C validator