Theorem List for Intuitionistic Logic Explorer - 8701-8800   *Has distinct variable
 group(s)
| Type | Label | Description | 
| Statement | 
|   | 
| Theorem | divvalap 8701* | 
Value of division: the (unique) element 𝑥 such that
       (𝐵
· 𝑥) = 𝐴.  This is meaningful
only when 𝐵 is apart from
       zero.  (Contributed by Jim Kingdon, 21-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (℩𝑥 ∈ ℂ (𝐵 · 𝑥) = 𝐴)) | 
|   | 
| Theorem | divmulap 8702 | 
Relationship between division and multiplication.  (Contributed by Jim
       Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ (𝐶 · 𝐵) = 𝐴)) | 
|   | 
| Theorem | divmulap2 8703 | 
Relationship between division and multiplication.  (Contributed by Jim
     Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐶 · 𝐵))) | 
|   | 
| Theorem | divmulap3 8704 | 
Relationship between division and multiplication.  (Contributed by Jim
     Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = 𝐵 ↔ 𝐴 = (𝐵 · 𝐶))) | 
|   | 
| Theorem | divclap 8705 | 
Closure law for division.  (Contributed by Jim Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℂ) | 
|   | 
| Theorem | recclap 8706 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℂ) | 
|   | 
| Theorem | divcanap2 8707 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
     22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | 
|   | 
| Theorem | divcanap1 8708 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
     22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | 
|   | 
| Theorem | diveqap0 8709 | 
A ratio is zero iff the numerator is zero.  (Contributed by Jim Kingdon,
     22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0)) | 
|   | 
| Theorem | divap0b 8710 | 
The ratio of numbers apart from zero is apart from zero.  (Contributed by
     Jim Kingdon, 22-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0)) | 
|   | 
| Theorem | divap0 8711 | 
The ratio of numbers apart from zero is apart from zero.  (Contributed by
     Jim Kingdon, 22-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / 𝐵) # 0) | 
|   | 
| Theorem | recap0 8712 | 
The reciprocal of a number apart from zero is apart from zero.
     (Contributed by Jim Kingdon, 24-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / 𝐴) # 0) | 
|   | 
| Theorem | recidap 8713 | 
Multiplication of a number and its reciprocal.  (Contributed by Jim
     Kingdon, 24-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 · (1 / 𝐴)) = 1) | 
|   | 
| Theorem | recidap2 8714 | 
Multiplication of a number and its reciprocal.  (Contributed by Jim
     Kingdon, 24-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ((1 / 𝐴) · 𝐴) = 1) | 
|   | 
| Theorem | divrecap 8715 | 
Relationship between division and reciprocal.  (Contributed by Jim
     Kingdon, 24-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | 
|   | 
| Theorem | divrecap2 8716 | 
Relationship between division and reciprocal.  (Contributed by Jim
     Kingdon, 25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (𝐴 / 𝐵) = ((1 / 𝐵) · 𝐴)) | 
|   | 
| Theorem | divassap 8717 | 
An associative law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | 
|   | 
| Theorem | div23ap 8718 | 
A commutative/associative law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵)) | 
|   | 
| Theorem | div32ap 8719 | 
A commutative/associative law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵))) | 
|   | 
| Theorem | div13ap 8720 | 
A commutative/associative law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴)) | 
|   | 
| Theorem | div12ap 8721 | 
A commutative/associative law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶))) | 
|   | 
| Theorem | divmulassap 8722 | 
An associative law for division and multiplication.  (Contributed by Jim
     Kingdon, 24-Jan-2022.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = ((𝐴 · 𝐵) · (𝐶 / 𝐷))) | 
|   | 
| Theorem | divmulasscomap 8723 | 
An associative/commutative law for division and multiplication.
     (Contributed by Jim Kingdon, 24-Jan-2022.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0)) → ((𝐴 · (𝐵 / 𝐷)) · 𝐶) = (𝐵 · ((𝐴 · 𝐶) / 𝐷))) | 
|   | 
| Theorem | divdirap 8724 | 
Distribution of division over addition.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | 
|   | 
| Theorem | divcanap3 8725 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | 
|   | 
| Theorem | divcanap4 8726 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
|   | 
| Theorem | div11ap 8727 | 
One-to-one relationship for division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | dividap 8728 | 
A number divided by itself is one.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (𝐴 / 𝐴) = 1) | 
|   | 
| Theorem | div0ap 8729 | 
Division into zero is zero.  (Contributed by Jim Kingdon, 25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (0 / 𝐴) = 0) | 
|   | 
| Theorem | div1 8730 | 
A number divided by 1 is itself.  (Contributed by NM, 9-Jan-2002.)  (Proof
     shortened by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 / 1) = 𝐴) | 
|   | 
| Theorem | 1div1e1 8731 | 
1 divided by 1 is 1 (common case).  (Contributed by David A. Wheeler,
     7-Dec-2018.)
 | 
| ⊢ (1 / 1) = 1 | 
|   | 
| Theorem | diveqap1 8732 | 
Equality in terms of unit ratio.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | divnegap 8733 | 
Move negative sign inside of a division.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐴 / 𝐵) = (-𝐴 / 𝐵)) | 
|   | 
| Theorem | muldivdirap 8734 | 
Distribution of division over addition with a multiplication.
     (Contributed by Jim Kingdon, 11-Nov-2021.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (((𝐶 · 𝐴) + 𝐵) / 𝐶) = (𝐴 + (𝐵 / 𝐶))) | 
|   | 
| Theorem | divsubdirap 8735 | 
Distribution of division over subtraction.  (Contributed by NM,
     4-Mar-2005.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 − 𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶))) | 
|   | 
| Theorem | recrecap 8736 | 
A number is equal to the reciprocal of its reciprocal.  (Contributed by
     Jim Kingdon, 25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → (1 / (1 / 𝐴)) = 𝐴) | 
|   | 
| Theorem | rec11ap 8737 | 
Reciprocal is one-to-one.  (Contributed by Jim Kingdon, 25-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | rec11rap 8738 | 
Mutual reciprocals.  (Contributed by Jim Kingdon, 25-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) = 𝐵 ↔ (1 / 𝐵) = 𝐴)) | 
|   | 
| Theorem | divmuldivap 8739 | 
Multiplication of two ratios.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 · 𝐵) / (𝐶 · 𝐷))) | 
|   | 
| Theorem | divdivdivap 8740 | 
Division of two ratios.  Theorem I.15 of [Apostol] p. 18.  (Contributed by
     Jim Kingdon, 25-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐵) / (𝐶 / 𝐷)) = ((𝐴 · 𝐷) / (𝐵 · 𝐶))) | 
|   | 
| Theorem | divcanap5 8741 | 
Cancellation of common factor in a ratio.  (Contributed by Jim Kingdon,
     25-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | divmul13ap 8742 | 
Swap the denominators in the product of two ratios.  (Contributed by Jim
     Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐵 / 𝐶) · (𝐴 / 𝐷))) | 
|   | 
| Theorem | divmul24ap 8743 | 
Swap the numerators in the product of two ratios.  (Contributed by Jim
     Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) · (𝐵 / 𝐷)) = ((𝐴 / 𝐷) · (𝐵 / 𝐶))) | 
|   | 
| Theorem | divmuleqap 8744 | 
Cross-multiply in an equality of ratios.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) = (𝐵 / 𝐷) ↔ (𝐴 · 𝐷) = (𝐵 · 𝐶))) | 
|   | 
| Theorem | recdivap 8745 | 
The reciprocal of a ratio.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴)) | 
|   | 
| Theorem | divcanap6 8746 | 
Cancellation of inverted fractions.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1) | 
|   | 
| Theorem | divdiv32ap 8747 | 
Swap denominators in a division.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | 
|   | 
| Theorem | divcanap7 8748 | 
Cancel equal divisors in a division.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | dmdcanap 8749 | 
Cancellation law for division and multiplication.  (Contributed by Jim
     Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ 𝐶 ∈ ℂ) → ((𝐴 / 𝐵) · (𝐶 / 𝐴)) = (𝐶 / 𝐵)) | 
|   | 
| Theorem | divdivap1 8750 | 
Division into a fraction.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶))) | 
|   | 
| Theorem | divdivap2 8751 | 
Division by a fraction.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0) ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵)) | 
|   | 
| Theorem | recdivap2 8752 | 
Division into a reciprocal.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵))) | 
|   | 
| Theorem | ddcanap 8753 | 
Cancellation in a double division.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 / (𝐴 / 𝐵)) = 𝐵) | 
|   | 
| Theorem | divadddivap 8754 | 
Addition of two ratios.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) + (𝐵 / 𝐷)) = (((𝐴 · 𝐷) + (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | 
|   | 
| Theorem | divsubdivap 8755 | 
Subtraction of two ratios.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((𝐶 ∈ ℂ ∧ 𝐶 # 0) ∧ (𝐷 ∈ ℂ ∧ 𝐷 # 0))) → ((𝐴 / 𝐶) − (𝐵 / 𝐷)) = (((𝐴 · 𝐷) − (𝐵 · 𝐶)) / (𝐶 · 𝐷))) | 
|   | 
| Theorem | conjmulap 8756 | 
Two numbers whose reciprocals sum to 1 are called "conjugates" and
satisfy
     this relationship.  (Contributed by Jim Kingdon, 26-Feb-2020.)
 | 
| ⊢ (((𝑃 ∈ ℂ ∧ 𝑃 # 0) ∧ (𝑄 ∈ ℂ ∧ 𝑄 # 0)) → (((1 / 𝑃) + (1 / 𝑄)) = 1 ↔ ((𝑃 − 1) · (𝑄 − 1)) = 1)) | 
|   | 
| Theorem | rerecclap 8757 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
       26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → (1 / 𝐴) ∈ ℝ) | 
|   | 
| Theorem | redivclap 8758 | 
Closure law for division of reals.  (Contributed by Jim Kingdon,
     26-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 # 0) → (𝐴 / 𝐵) ∈ ℝ) | 
|   | 
| Theorem | eqneg 8759 | 
A number equal to its negative is zero.  (Contributed by NM, 12-Jul-2005.)
     (Revised by Mario Carneiro, 27-May-2016.)
 | 
| ⊢ (𝐴 ∈ ℂ → (𝐴 = -𝐴 ↔ 𝐴 = 0)) | 
|   | 
| Theorem | eqnegd 8760 | 
A complex number equals its negative iff it is zero.  Deduction form of
       eqneg 8759.  (Contributed by David Moews, 28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)   
 ⇒   ⊢ (𝜑 → (𝐴 = -𝐴 ↔ 𝐴 = 0)) | 
|   | 
| Theorem | eqnegad 8761 | 
If a complex number equals its own negative, it is zero.  One-way
       deduction form of eqneg 8759.  (Contributed by David Moews,
       28-Feb-2017.)
 | 
| ⊢ (𝜑 → 𝐴 ∈ ℂ)    &   ⊢ (𝜑 → 𝐴 = -𝐴)    ⇒   ⊢ (𝜑 → 𝐴 = 0) | 
|   | 
| Theorem | div2negap 8762 | 
Quotient of two negatives.  (Contributed by Jim Kingdon, 27-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → (-𝐴 / -𝐵) = (𝐴 / 𝐵)) | 
|   | 
| Theorem | divneg2ap 8763 | 
Move negative sign inside of a division.  (Contributed by Jim Kingdon,
     27-Feb-2020.)
 | 
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 # 0) → -(𝐴 / 𝐵) = (𝐴 / -𝐵)) | 
|   | 
| Theorem | recclapzi 8764 | 
Closure law for reciprocal.  (Contributed by Jim Kingdon,
       27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 # 0 → (1 / 𝐴) ∈ ℂ) | 
|   | 
| Theorem | recap0apzi 8765 | 
The reciprocal of a number apart from zero is apart from zero.
       (Contributed by Jim Kingdon, 27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 # 0 → (1 / 𝐴) # 0) | 
|   | 
| Theorem | recidapzi 8766 | 
Multiplication of a number and its reciprocal.  (Contributed by Jim
       Kingdon, 27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 # 0 → (𝐴 · (1 / 𝐴)) = 1) | 
|   | 
| Theorem | div1i 8767 | 
A number divided by 1 is itself.  (Contributed by NM, 9-Jan-2002.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 / 1) = 𝐴 | 
|   | 
| Theorem | eqnegi 8768 | 
A number equal to its negative is zero.  (Contributed by NM,
       29-May-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ   
 ⇒   ⊢ (𝐴 = -𝐴 ↔ 𝐴 = 0) | 
|   | 
| Theorem | recclapi 8769 | 
Closure law for reciprocal.  (Contributed by NM, 30-Apr-2005.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (1 / 𝐴) ∈ ℂ | 
|   | 
| Theorem | recidapi 8770 | 
Multiplication of a number and its reciprocal.  (Contributed by NM,
         9-Feb-1995.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (𝐴 · (1 / 𝐴)) = 1 | 
|   | 
| Theorem | recrecapi 8771 | 
A number is equal to the reciprocal of its reciprocal.  Theorem I.10
         of [Apostol] p. 18.  (Contributed by
NM, 9-Feb-1995.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (1 / (1 / 𝐴)) = 𝐴 | 
|   | 
| Theorem | dividapi 8772 | 
A number divided by itself is one.  (Contributed by NM,
         9-Feb-1995.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (𝐴 / 𝐴) = 1 | 
|   | 
| Theorem | div0api 8773 | 
Division into zero is zero.  (Contributed by NM, 12-Aug-1999.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐴 # 0   
 ⇒   ⊢ (0 / 𝐴) = 0 | 
|   | 
| Theorem | divclapzi 8774 | 
Closure law for division.  (Contributed by Jim Kingdon, 27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → (𝐴 / 𝐵) ∈ ℂ) | 
|   | 
| Theorem | divcanap1zi 8775 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
       27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) · 𝐵) = 𝐴) | 
|   | 
| Theorem | divcanap2zi 8776 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
       27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → (𝐵 · (𝐴 / 𝐵)) = 𝐴) | 
|   | 
| Theorem | divrecapzi 8777 | 
Relationship between division and reciprocal.  (Contributed by Jim
       Kingdon, 27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵))) | 
|   | 
| Theorem | divcanap3zi 8778 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
       27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → ((𝐵 · 𝐴) / 𝐵) = 𝐴) | 
|   | 
| Theorem | divcanap4zi 8779 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
       27-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → ((𝐴 · 𝐵) / 𝐵) = 𝐴) | 
|   | 
| Theorem | rec11api 8780 | 
Reciprocal is one-to-one.  (Contributed by Jim Kingdon, 28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈
 ℂ    ⇒   ⊢ ((𝐴 # 0 ∧ 𝐵 # 0) → ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵)) | 
|   | 
| Theorem | divclapi 8781 | 
Closure law for division.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ (𝐴 / 𝐵) ∈ ℂ | 
|   | 
| Theorem | divcanap2i 8782 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ (𝐵 · (𝐴 / 𝐵)) = 𝐴 | 
|   | 
| Theorem | divcanap1i 8783 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) · 𝐵) = 𝐴 | 
|   | 
| Theorem | divrecapi 8784 | 
Relationship between division and reciprocal.  (Contributed by Jim
         Kingdon, 28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ (𝐴 / 𝐵) = (𝐴 · (1 / 𝐵)) | 
|   | 
| Theorem | divcanap3i 8785 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((𝐵 · 𝐴) / 𝐵) = 𝐴 | 
|   | 
| Theorem | divcanap4i 8786 | 
A cancellation law for division.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((𝐴 · 𝐵) / 𝐵) = 𝐴 | 
|   | 
| Theorem | divap0i 8787 | 
The ratio of numbers apart from zero is apart from zero.  (Contributed
         by Jim Kingdon, 28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐴 # 0    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ (𝐴 / 𝐵) # 0 | 
|   | 
| Theorem | rec11apii 8788 | 
Reciprocal is one-to-one.  (Contributed by Jim Kingdon,
         28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐴 # 0    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((1 / 𝐴) = (1 / 𝐵) ↔ 𝐴 = 𝐵) | 
|   | 
| Theorem | divassapzi 8789 | 
An associative law for division.  (Contributed by Jim Kingdon,
       28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ (𝐶 # 0 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶))) | 
|   | 
| Theorem | divmulapzi 8790 | 
Relationship between division and multiplication.  (Contributed by Jim
       Kingdon, 28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ (𝐵 # 0 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴)) | 
|   | 
| Theorem | divdirapzi 8791 | 
Distribution of division over addition.  (Contributed by Jim Kingdon,
       28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ (𝐶 # 0 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶))) | 
|   | 
| Theorem | divdiv23apzi 8792 | 
Swap denominators in a division.  (Contributed by Jim Kingdon,
       28-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈
 ℂ    ⇒   ⊢ ((𝐵 # 0 ∧ 𝐶 # 0) → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵)) | 
|   | 
| Theorem | divmulapi 8793 | 
Relationship between division and multiplication.  (Contributed by Jim
         Kingdon, 29-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐵 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴) | 
|   | 
| Theorem | divdiv32api 8794 | 
Swap denominators in a division.  (Contributed by Jim Kingdon,
         29-Feb-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐵 # 0    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵) | 
|   | 
| Theorem | divassapi 8795 | 
An associative law for division.  (Contributed by Jim Kingdon,
         9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)) | 
|   | 
| Theorem | divdirapi 8796 | 
Distribution of division over addition.  (Contributed by Jim Kingdon,
         9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)) | 
|   | 
| Theorem | div23api 8797 | 
A commutative/associative law for division.  (Contributed by Jim
         Kingdon, 9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵) | 
|   | 
| Theorem | div11api 8798 | 
One-to-one relationship for division.  (Contributed by Jim Kingdon,
         9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐶 # 0   
 ⇒   ⊢ ((𝐴 / 𝐶) = (𝐵 / 𝐶) ↔ 𝐴 = 𝐵) | 
|   | 
| Theorem | divmuldivapi 8799 | 
Multiplication of two ratios.  (Contributed by Jim Kingdon,
       9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐷 ∈ ℂ    &   ⊢ 𝐵 # 0    &   ⊢ 𝐷 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)) | 
|   | 
| Theorem | divmul13api 8800 | 
Swap denominators of two ratios.  (Contributed by Jim Kingdon,
       9-Mar-2020.)
 | 
| ⊢ 𝐴 ∈ ℂ    &   ⊢ 𝐵 ∈ ℂ    &   ⊢ 𝐶 ∈ ℂ    &   ⊢ 𝐷 ∈ ℂ    &   ⊢ 𝐵 # 0    &   ⊢ 𝐷 # 0   
 ⇒   ⊢ ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐶 / 𝐵) · (𝐴 / 𝐷)) |