HomeHome Intuitionistic Logic Explorer
Theorem List (p. 88 of 133)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8701-8800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlbinfle 8701* If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
Theoremsuprubex 8702* A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
Theoremsuprlubex 8703* The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐵 < sup(𝐴, ℝ, < ) ↔ ∃𝑧𝐴 𝐵 < 𝑧))
 
Theoremsuprnubex 8704* An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (¬ 𝐵 < sup(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 ¬ 𝐵 < 𝑧))
 
Theoremsuprleubex 8705* The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))    &   (𝜑𝐴 ⊆ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (sup(𝐴, ℝ, < ) ≤ 𝐵 ↔ ∀𝑧𝐴 𝑧𝐵))
 
Theoremnegiso 8706 Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
𝐹 = (𝑥 ∈ ℝ ↦ -𝑥)       (𝐹 Isom < , < (ℝ, ℝ) ∧ 𝐹 = 𝐹)
 
Theoremdfinfre 8707* The infimum of a set of reals 𝐴. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
(𝐴 ⊆ ℝ → inf(𝐴, ℝ, < ) = {𝑥 ∈ ℝ ∣ (∀𝑦𝐴 𝑥𝑦 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))})
 
Theoremsup3exmid 8708* If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.)
((𝑢 ⊆ ℝ ∧ ∃𝑤 𝑤𝑢 ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑢 𝑦𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝑢 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝑢 𝑦 < 𝑧)))       DECID 𝜑
 
4.3.11  Imaginary and complex number properties
 
Theoremcrap0 8709 The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 # 0 ∨ 𝐵 # 0) ↔ (𝐴 + (i · 𝐵)) # 0))
 
Theoremcreur 8710* The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ∃!𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremcreui 8711* The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℂ → ∃!𝑦 ∈ ℝ ∃𝑥 ∈ ℝ 𝐴 = (𝑥 + (i · 𝑦)))
 
Theoremcju 8712* The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
(𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
 
4.4  Integer sets
 
4.4.1  Positive integers (as a subset of complex numbers)
 
Syntaxcn 8713 Extend class notation to include the class of positive integers.
class
 
Definitiondf-inn 8714* Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 8715 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.)
ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theoremdfnn2 8715* Definition of the set of positive integers. Another name for df-inn 8714. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
ℕ = {𝑥 ∣ (1 ∈ 𝑥 ∧ ∀𝑦𝑥 (𝑦 + 1) ∈ 𝑥)}
 
Theorempeano5nni 8716* Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
((1 ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 + 1) ∈ 𝐴) → ℕ ⊆ 𝐴)
 
Theoremnnssre 8717 The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
ℕ ⊆ ℝ
 
Theoremnnsscn 8718 The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
ℕ ⊆ ℂ
 
Theoremnnex 8719 The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.)
ℕ ∈ V
 
Theoremnnre 8720 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
 
Theoremnncn 8721 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
(𝐴 ∈ ℕ → 𝐴 ∈ ℂ)
 
Theoremnnrei 8722 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ∈ ℝ
 
Theoremnncni 8723 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ∈ ℂ
 
Theorem1nn 8724 Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.)
1 ∈ ℕ
 
Theorempeano2nn 8725 Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
(𝐴 ∈ ℕ → (𝐴 + 1) ∈ ℕ)
 
Theoremnnred 8726 A positive integer is a real number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℝ)
 
Theoremnncnd 8727 A positive integer is a complex number. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ∈ ℂ)
 
Theorempeano2nnd 8728 Peano postulate: a successor of a positive integer is a positive integer. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → (𝐴 + 1) ∈ ℕ)
 
4.4.2  Principle of mathematical induction
 
Theoremnnind 8729* Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl 8733 for an example of its use. This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))    &   𝜓    &   (𝑦 ∈ ℕ → (𝜒𝜃))       (𝐴 ∈ ℕ → 𝜏)
 
TheoremnnindALT 8730* Principle of Mathematical Induction (inference schema). The last four hypotheses give us the substitution instances we need; the first two are the induction step and the basis.

This ALT version of nnind 8729 has a different hypothesis order. It may be easier to use with the metamath program's Proof Assistant, because "MM-PA> assign last" will be applied to the substitution instances first. We may eventually use this one as the official version. You may use either version. After the proof is complete, the ALT version can be changed to the non-ALT version with "MM-PA> minimize nnind /allow". (Contributed by NM, 7-Dec-2005.) (New usage is discouraged.) (Proof modification is discouraged.)

(𝑦 ∈ ℕ → (𝜒𝜃))    &   𝜓    &   (𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = 𝑦 → (𝜑𝜒))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜃))    &   (𝑥 = 𝐴 → (𝜑𝜏))       (𝐴 ∈ ℕ → 𝜏)
 
Theoremnn1m1nn 8731 Every positive integer is one or a successor. (Contributed by Mario Carneiro, 16-May-2014.)
(𝐴 ∈ ℕ → (𝐴 = 1 ∨ (𝐴 − 1) ∈ ℕ))
 
Theoremnn1suc 8732* If a statement holds for 1 and also holds for a successor, it holds for all positive integers. The first three hypotheses give us the substitution instances we need; the last two show that it holds for 1 and for a successor. (Contributed by NM, 11-Oct-2004.) (Revised by Mario Carneiro, 16-May-2014.)
(𝑥 = 1 → (𝜑𝜓))    &   (𝑥 = (𝑦 + 1) → (𝜑𝜒))    &   (𝑥 = 𝐴 → (𝜑𝜃))    &   𝜓    &   (𝑦 ∈ ℕ → 𝜒)       (𝐴 ∈ ℕ → 𝜃)
 
Theoremnnaddcl 8733 Closure of addition of positive integers, proved by induction on the second addend. (Contributed by NM, 12-Jan-1997.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 + 𝐵) ∈ ℕ)
 
Theoremnnmulcl 8734 Closure of multiplication of positive integers. (Contributed by NM, 12-Jan-1997.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 · 𝐵) ∈ ℕ)
 
Theoremnnmulcli 8735 Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 · 𝐵) ∈ ℕ
 
Theoremnnge1 8736 A positive integer is one or greater. (Contributed by NM, 25-Aug-1999.)
(𝐴 ∈ ℕ → 1 ≤ 𝐴)
 
Theoremnnle1eq1 8737 A positive integer is less than or equal to one iff it is equal to one. (Contributed by NM, 3-Apr-2005.)
(𝐴 ∈ ℕ → (𝐴 ≤ 1 ↔ 𝐴 = 1))
 
Theoremnngt0 8738 A positive integer is positive. (Contributed by NM, 26-Sep-1999.)
(𝐴 ∈ ℕ → 0 < 𝐴)
 
Theoremnnnlt1 8739 A positive integer is not less than one. (Contributed by NM, 18-Jan-2004.) (Revised by Mario Carneiro, 27-May-2016.)
(𝐴 ∈ ℕ → ¬ 𝐴 < 1)
 
Theorem0nnn 8740 Zero is not a positive integer. (Contributed by NM, 25-Aug-1999.)
¬ 0 ∈ ℕ
 
Theoremnnne0 8741 A positive integer is nonzero. (Contributed by NM, 27-Sep-1999.)
(𝐴 ∈ ℕ → 𝐴 ≠ 0)
 
Theoremnnap0 8742 A positive integer is apart from zero. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝐴 ∈ ℕ → 𝐴 # 0)
 
Theoremnngt0i 8743 A positive integer is positive (inference version). (Contributed by NM, 17-Sep-1999.)
𝐴 ∈ ℕ       0 < 𝐴
 
Theoremnnap0i 8744 A positive integer is apart from zero (inference version). (Contributed by Jim Kingdon, 1-Jan-2023.)
𝐴 ∈ ℕ       𝐴 # 0
 
Theoremnnne0i 8745 A positive integer is nonzero (inference version). (Contributed by NM, 25-Aug-1999.)
𝐴 ∈ ℕ       𝐴 ≠ 0
 
Theoremnn2ge 8746* There exists a positive integer greater than or equal to any two others. (Contributed by NM, 18-Aug-1999.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℕ (𝐴𝑥𝐵𝑥))
 
Theoremnn1gt1 8747 A positive integer is either one or greater than one. This is for ; 0elnn 4527 is a similar theorem for ω (the natural numbers as ordinals). (Contributed by Jim Kingdon, 7-Mar-2020.)
(𝐴 ∈ ℕ → (𝐴 = 1 ∨ 1 < 𝐴))
 
Theoremnngt1ne1 8748 A positive integer is greater than one iff it is not equal to one. (Contributed by NM, 7-Oct-2004.)
(𝐴 ∈ ℕ → (1 < 𝐴𝐴 ≠ 1))
 
Theoremnndivre 8749 The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.)
((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ)
 
Theoremnnrecre 8750 The reciprocal of a positive integer is real. (Contributed by NM, 8-Feb-2008.)
(𝑁 ∈ ℕ → (1 / 𝑁) ∈ ℝ)
 
Theoremnnrecgt0 8751 The reciprocal of a positive integer is positive. (Contributed by NM, 25-Aug-1999.)
(𝐴 ∈ ℕ → 0 < (1 / 𝐴))
 
Theoremnnsub 8752 Subtraction of positive integers. (Contributed by NM, 20-Aug-2001.) (Revised by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ))
 
Theoremnnsubi 8753 Subtraction of positive integers. (Contributed by NM, 19-Aug-2001.)
𝐴 ∈ ℕ    &   𝐵 ∈ ℕ       (𝐴 < 𝐵 ↔ (𝐵𝐴) ∈ ℕ)
 
Theoremnndiv 8754* Two ways to express "𝐴 divides 𝐵 " for positive integers. (Contributed by NM, 3-Feb-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.)
((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℕ (𝐴 · 𝑥) = 𝐵 ↔ (𝐵 / 𝐴) ∈ ℕ))
 
Theoremnndivtr 8755 Transitive property of divisibility: if 𝐴 divides 𝐵 and 𝐵 divides 𝐶, then 𝐴 divides 𝐶. Typically, 𝐶 would be an integer, although the theorem holds for complex 𝐶. (Contributed by NM, 3-May-2005.)
(((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℂ) ∧ ((𝐵 / 𝐴) ∈ ℕ ∧ (𝐶 / 𝐵) ∈ ℕ)) → (𝐶 / 𝐴) ∈ ℕ)
 
Theoremnnge1d 8756 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → 1 ≤ 𝐴)
 
Theoremnngt0d 8757 A positive integer is positive. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → 0 < 𝐴)
 
Theoremnnne0d 8758 A positive integer is nonzero. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 ≠ 0)
 
Theoremnnap0d 8759 A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.)
(𝜑𝐴 ∈ ℕ)       (𝜑𝐴 # 0)
 
Theoremnnrecred 8760 The reciprocal of a positive integer is real. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremnnaddcld 8761 Closure of addition of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 + 𝐵) ∈ ℕ)
 
Theoremnnmulcld 8762 Closure of multiplication of positive integers. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℕ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 · 𝐵) ∈ ℕ)
 
Theoremnndivred 8763 A positive integer is one or greater. (Contributed by Mario Carneiro, 27-May-2016.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℕ)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
4.4.3  Decimal representation of numbers

The decimal representation of numbers/integers is based on the decimal digits 0 through 9 (df-0 7620 through df-9 8779), which are explicitly defined in the following. Note that the numbers 0 and 1 are constants defined as primitives of the complex number axiom system (see df-0 7620 and df-1 7621).

Integers can also be exhibited as sums of powers of 10 (e.g. the number 103 can be expressed as ((10↑2) + 3)) or as some other expression built from operations on the numbers 0 through 9. For example, the prime number 823541 can be expressed as (7↑7) − 2.

Most abstract math rarely requires numbers larger than 4. Even in Wiles' proof of Fermat's Last Theorem, the largest number used appears to be 12.

 
Syntaxc2 8764 Extend class notation to include the number 2.
class 2
 
Syntaxc3 8765 Extend class notation to include the number 3.
class 3
 
Syntaxc4 8766 Extend class notation to include the number 4.
class 4
 
Syntaxc5 8767 Extend class notation to include the number 5.
class 5
 
Syntaxc6 8768 Extend class notation to include the number 6.
class 6
 
Syntaxc7 8769 Extend class notation to include the number 7.
class 7
 
Syntaxc8 8770 Extend class notation to include the number 8.
class 8
 
Syntaxc9 8771 Extend class notation to include the number 9.
class 9
 
Definitiondf-2 8772 Define the number 2. (Contributed by NM, 27-May-1999.)
2 = (1 + 1)
 
Definitiondf-3 8773 Define the number 3. (Contributed by NM, 27-May-1999.)
3 = (2 + 1)
 
Definitiondf-4 8774 Define the number 4. (Contributed by NM, 27-May-1999.)
4 = (3 + 1)
 
Definitiondf-5 8775 Define the number 5. (Contributed by NM, 27-May-1999.)
5 = (4 + 1)
 
Definitiondf-6 8776 Define the number 6. (Contributed by NM, 27-May-1999.)
6 = (5 + 1)
 
Definitiondf-7 8777 Define the number 7. (Contributed by NM, 27-May-1999.)
7 = (6 + 1)
 
Definitiondf-8 8778 Define the number 8. (Contributed by NM, 27-May-1999.)
8 = (7 + 1)
 
Definitiondf-9 8779 Define the number 9. (Contributed by NM, 27-May-1999.)
9 = (8 + 1)
 
Theorem0ne1 8780 0 ≠ 1 (common case). See aso 1ap0 8345. (Contributed by David A. Wheeler, 8-Dec-2018.)
0 ≠ 1
 
Theorem1ne0 8781 1 ≠ 0. See aso 1ap0 8345. (Contributed by Jim Kingdon, 9-Mar-2020.)
1 ≠ 0
 
Theorem1m1e0 8782 (1 − 1) = 0 (common case). (Contributed by David A. Wheeler, 7-Jul-2016.)
(1 − 1) = 0
 
Theorem2re 8783 The number 2 is real. (Contributed by NM, 27-May-1999.)
2 ∈ ℝ
 
Theorem2cn 8784 The number 2 is a complex number. (Contributed by NM, 30-Jul-2004.)
2 ∈ ℂ
 
Theorem2ex 8785 2 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
2 ∈ V
 
Theorem2cnd 8786 2 is a complex number, deductive form (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
(𝜑 → 2 ∈ ℂ)
 
Theorem3re 8787 The number 3 is real. (Contributed by NM, 27-May-1999.)
3 ∈ ℝ
 
Theorem3cn 8788 The number 3 is a complex number. (Contributed by FL, 17-Oct-2010.)
3 ∈ ℂ
 
Theorem3ex 8789 3 is a set (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
3 ∈ V
 
Theorem4re 8790 The number 4 is real. (Contributed by NM, 27-May-1999.)
4 ∈ ℝ
 
Theorem4cn 8791 The number 4 is a complex number. (Contributed by David A. Wheeler, 7-Jul-2016.)
4 ∈ ℂ
 
Theorem5re 8792 The number 5 is real. (Contributed by NM, 27-May-1999.)
5 ∈ ℝ
 
Theorem5cn 8793 The number 5 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
5 ∈ ℂ
 
Theorem6re 8794 The number 6 is real. (Contributed by NM, 27-May-1999.)
6 ∈ ℝ
 
Theorem6cn 8795 The number 6 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
6 ∈ ℂ
 
Theorem7re 8796 The number 7 is real. (Contributed by NM, 27-May-1999.)
7 ∈ ℝ
 
Theorem7cn 8797 The number 7 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
7 ∈ ℂ
 
Theorem8re 8798 The number 8 is real. (Contributed by NM, 27-May-1999.)
8 ∈ ℝ
 
Theorem8cn 8799 The number 8 is complex. (Contributed by David A. Wheeler, 8-Dec-2018.)
8 ∈ ℂ
 
Theorem9re 8800 The number 9 is real. (Contributed by NM, 27-May-1999.)
9 ∈ ℝ
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13239
  Copyright terms: Public domain < Previous  Next >