| Intuitionistic Logic Explorer Theorem List (p. 88 of 164) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | leltaddd 8701 | Adding both sides of two orderings. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
| Theorem | lt2addd 8702 | Adding both side of two inequalities. Theorem I.25 of [Apostol] p. 20. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) < (𝐶 + 𝐷)) | ||
| Theorem | lt2subd 8703 | Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐷 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐶) & ⊢ (𝜑 → 𝐵 < 𝐷) ⇒ ⊢ (𝜑 → (𝐴 − 𝐷) < (𝐶 − 𝐵)) | ||
| Theorem | possumd 8704 | Condition for a positive sum. (Contributed by Scott Fenton, 16-Dec-2017.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → (0 < (𝐴 + 𝐵) ↔ -𝐵 < 𝐴)) | ||
| Theorem | sublt0d 8705 | When a subtraction gives a negative result. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) ⇒ ⊢ (𝜑 → ((𝐴 − 𝐵) < 0 ↔ 𝐴 < 𝐵)) | ||
| Theorem | ltaddsublt 8706 | Addition and subtraction on one side of 'less than'. (Contributed by AV, 24-Nov-2018.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐵 < 𝐶 ↔ ((𝐴 + 𝐵) − 𝐶) < 𝐴)) | ||
| Theorem | 1le1 8707 | 1 ≤ 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.) |
| ⊢ 1 ≤ 1 | ||
| Theorem | gt0add 8708 | A positive sum must have a positive addend. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 26-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < (𝐴 + 𝐵)) → (0 < 𝐴 ∨ 0 < 𝐵)) | ||
| Syntax | creap 8709 | Class of real apartness relation. |
| class #ℝ | ||
| Definition | df-reap 8710* | Define real apartness. Definition in Section 11.2.1 of [HoTT], p. (varies). Although #ℝ is an apartness relation on the reals (see df-ap 8717 for more discussion of apartness relations), for our purposes it is just a stepping stone to defining # which is an apartness relation on complex numbers. On the reals, #ℝ and # agree (apreap 8722). (Contributed by Jim Kingdon, 26-Jan-2020.) |
| ⊢ #ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ (𝑥 < 𝑦 ∨ 𝑦 < 𝑥))} | ||
| Theorem | reapval 8711 | Real apartness in terms of classes. Beyond the development of # itself, proofs should use reaplt 8723 instead. (New usage is discouraged.) (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 #ℝ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | reapirr 8712 | Real apartness is irreflexive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). Beyond the development of # itself, proofs should use apirr 8740 instead. (Contributed by Jim Kingdon, 26-Jan-2020.) |
| ⊢ (𝐴 ∈ ℝ → ¬ 𝐴 #ℝ 𝐴) | ||
| Theorem | recexre 8713* | Existence of reciprocal of real number. (Contributed by Jim Kingdon, 29-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 #ℝ 0) → ∃𝑥 ∈ ℝ (𝐴 · 𝑥) = 1) | ||
| Theorem | reapti 8714 | Real apartness is tight. Beyond the development of apartness itself, proofs should use apti 8757. (Contributed by Jim Kingdon, 30-Jan-2020.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 #ℝ 𝐵)) | ||
| Theorem | recexgt0 8715* | Existence of reciprocal of positive real number. (Contributed by Jim Kingdon, 6-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ∃𝑥 ∈ ℝ (0 < 𝑥 ∧ (𝐴 · 𝑥) = 1)) | ||
| Syntax | cap 8716 | Class of complex apartness relation. |
| class # | ||
| Definition | df-ap 8717* |
Define complex apartness. Definition 6.1 of [Geuvers], p. 17.
Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8814 which says that a number apart from zero has a reciprocal). The defining characteristics of an apartness are irreflexivity (apirr 8740), symmetry (apsym 8741), and cotransitivity (apcotr 8742). Apartness implies negated equality, as seen at apne 8758, and the converse would also follow if we assumed excluded middle. In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8757). (Contributed by Jim Kingdon, 26-Jan-2020.) |
| ⊢ # = {〈𝑥, 𝑦〉 ∣ ∃𝑟 ∈ ℝ ∃𝑠 ∈ ℝ ∃𝑡 ∈ ℝ ∃𝑢 ∈ ℝ ((𝑥 = (𝑟 + (i · 𝑠)) ∧ 𝑦 = (𝑡 + (i · 𝑢))) ∧ (𝑟 #ℝ 𝑡 ∨ 𝑠 #ℝ 𝑢))} | ||
| Theorem | ixi 8718 | i times itself is minus 1. (Contributed by NM, 6-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ (i · i) = -1 | ||
| Theorem | inelr 8719 | The imaginary unit i is not a real number. (Contributed by NM, 6-May-1999.) |
| ⊢ ¬ i ∈ ℝ | ||
| Theorem | rimul 8720 | A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ (i · 𝐴) ∈ ℝ) → 𝐴 = 0) | ||
| Theorem | rereim 8721 | Decomposition of a real number into real part (itself) and imaginary part (zero). (Contributed by Jim Kingdon, 30-Jan-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐴 = (𝐵 + (i · 𝐶)))) → (𝐵 = 𝐴 ∧ 𝐶 = 0)) | ||
| Theorem | apreap 8722 | Complex apartness and real apartness agree on the real numbers. (Contributed by Jim Kingdon, 31-Jan-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ 𝐴 #ℝ 𝐵)) | ||
| Theorem | reaplt 8723 | Real apartness in terms of less than. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 1-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | ||
| Theorem | reapltxor 8724 | Real apartness in terms of less than (exclusive-or version). (Contributed by Jim Kingdon, 23-Mar-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵 ⊻ 𝐵 < 𝐴))) | ||
| Theorem | 1ap0 8725 | One is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ 1 # 0 | ||
| Theorem | ltmul1a 8726 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 15-May-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) ∧ 𝐴 < 𝐵) → (𝐴 · 𝐶) < (𝐵 · 𝐶)) | ||
| Theorem | ltmul1 8727 | Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐶) < (𝐵 · 𝐶))) | ||
| Theorem | lemul1 8728 | Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 21-Feb-2005.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 ≤ 𝐵 ↔ (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))) | ||
| Theorem | reapmul1lem 8729 | Lemma for reapmul1 8730. (Contributed by Jim Kingdon, 8-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
| Theorem | reapmul1 8730 | Multiplication of both sides of real apartness by a real number apart from zero. Special case of apmul1 8923. (Contributed by Jim Kingdon, 8-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 𝐶 # 0)) → (𝐴 # 𝐵 ↔ (𝐴 · 𝐶) # (𝐵 · 𝐶))) | ||
| Theorem | reapadd1 8731 | Real addition respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
| Theorem | reapneg 8732 | Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
| Theorem | reapcotr 8733 | Real apartness is cotransitive. Part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
| Theorem | remulext1 8734 | Left extensionality for multiplication. (Contributed by Jim Kingdon, 19-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
| Theorem | remulext2 8735 | Right extensionality for real multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
| Theorem | apsqgt0 8736 | The square of a real number apart from zero is positive. (Contributed by Jim Kingdon, 7-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | ||
| Theorem | cru 8737 | The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) | ||
| Theorem | apreim 8738 | Complex apartness in terms of real and imaginary parts. (Contributed by Jim Kingdon, 12-Feb-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) # (𝐶 + (i · 𝐷)) ↔ (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
| Theorem | mulreim 8739 | Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))) | ||
| Theorem | apirr 8740 | Apartness is irreflexive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
| ⊢ (𝐴 ∈ ℂ → ¬ 𝐴 # 𝐴) | ||
| Theorem | apsym 8741 | Apartness is symmetric. This theorem for real numbers is part of Definition 11.2.7(v) of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ 𝐵 # 𝐴)) | ||
| Theorem | apcotr 8742 | Apartness is cotransitive. (Contributed by Jim Kingdon, 16-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 → (𝐴 # 𝐶 ∨ 𝐵 # 𝐶))) | ||
| Theorem | apadd1 8743 | Addition respects apartness. Analogue of addcan 8314 for apartness. (Contributed by Jim Kingdon, 13-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 + 𝐶) # (𝐵 + 𝐶))) | ||
| Theorem | apadd2 8744 | Addition respects apartness. (Contributed by Jim Kingdon, 16-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐶 + 𝐴) # (𝐶 + 𝐵))) | ||
| Theorem | addext 8745 | Strong extensionality for addition. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 6003. For us, it is proved a different way. (Contributed by Jim Kingdon, 15-Feb-2020.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) # (𝐶 + 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
| Theorem | apneg 8746 | Negation respects apartness. (Contributed by Jim Kingdon, 14-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵)) | ||
| Theorem | mulext1 8747 | Left extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐶) # (𝐵 · 𝐶) → 𝐴 # 𝐵)) | ||
| Theorem | mulext2 8748 | Right extensionality for complex multiplication. (Contributed by Jim Kingdon, 22-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐶 · 𝐴) # (𝐶 · 𝐵) → 𝐴 # 𝐵)) | ||
| Theorem | mulext 8749 | Strong extensionality for multiplication. Given excluded middle, apartness would be equivalent to negated equality and this would follow readily (for all operations) from oveq12 6003. For us, it is proved a different way. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) # (𝐶 · 𝐷) → (𝐴 # 𝐶 ∨ 𝐵 # 𝐷))) | ||
| Theorem | mulap0r 8750 | A product apart from zero. Lemma 2.13 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐴 · 𝐵) # 0) → (𝐴 # 0 ∧ 𝐵 # 0)) | ||
| Theorem | msqge0 8751 | A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) | ||
| Theorem | msqge0i 8752 | A square is nonnegative. (Contributed by NM, 14-May-1999.) (Proof shortened by Andrew Salmon, 19-Nov-2011.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ 0 ≤ (𝐴 · 𝐴) | ||
| Theorem | msqge0d 8753 | A square is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐴)) | ||
| Theorem | mulge0 8754 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 8-Oct-1999.) (Revised by Mario Carneiro, 27-May-2016.) |
| ⊢ (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)) | ||
| Theorem | mulge0i 8755 | The product of two nonnegative numbers is nonnegative. (Contributed by NM, 30-Jul-1999.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)) | ||
| Theorem | mulge0d 8756 | The product of two nonnegative numbers is nonnegative. (Contributed by Mario Carneiro, 27-May-2016.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ (𝐴 · 𝐵)) | ||
| Theorem | apti 8757 | Complex apartness is tight. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 = 𝐵 ↔ ¬ 𝐴 # 𝐵)) | ||
| Theorem | apne 8758 | Apartness implies negated equality. We cannot in general prove the converse (as shown at neapmkv 16367), which is the whole point of having separate notations for apartness and negated equality. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 # 𝐵 → 𝐴 ≠ 𝐵)) | ||
| Theorem | apcon4bid 8759 | Contrapositive law deduction for apartness. (Contributed by Jim Kingdon, 31-Jul-2023.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ) & ⊢ (𝜑 → (𝐴 # 𝐵 ↔ 𝐶 # 𝐷)) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝐶 = 𝐷)) | ||
| Theorem | leltap 8760 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
| Theorem | gt0ap0 8761 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 # 0) | ||
| Theorem | gt0ap0i 8762 | Positive means apart from zero (useful for ordering theorems involving division). (Contributed by Jim Kingdon, 27-Feb-2020.) |
| ⊢ 𝐴 ∈ ℝ ⇒ ⊢ (0 < 𝐴 → 𝐴 # 0) | ||
| Theorem | gt0ap0ii 8763 | Positive implies apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 0 < 𝐴 ⇒ ⊢ 𝐴 # 0 | ||
| Theorem | gt0ap0d 8764 | Positive implies apart from zero. Because of the way we define #, 𝐴 must be an element of ℝ, not just ℝ*. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
| Theorem | negap0 8765 | A number is apart from zero iff its negative is apart from zero. (Contributed by Jim Kingdon, 27-Feb-2020.) |
| ⊢ (𝐴 ∈ ℂ → (𝐴 # 0 ↔ -𝐴 # 0)) | ||
| Theorem | negap0d 8766 | The negative of a number apart from zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → -𝐴 # 0) | ||
| Theorem | ltleap 8767 | Less than in terms of non-strict order and apartness. (Contributed by Jim Kingdon, 28-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (𝐴 ≤ 𝐵 ∧ 𝐴 # 𝐵))) | ||
| Theorem | ltap 8768 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 # 𝐴) | ||
| Theorem | gtapii 8769 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐵 # 𝐴 | ||
| Theorem | ltapii 8770 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ & ⊢ 𝐴 < 𝐵 ⇒ ⊢ 𝐴 # 𝐵 | ||
| Theorem | ltapi 8771 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ 𝐴 ∈ ℝ & ⊢ 𝐵 ∈ ℝ ⇒ ⊢ (𝐴 < 𝐵 → 𝐵 # 𝐴) | ||
| Theorem | gtapd 8772 | 'Greater than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐵 # 𝐴) | ||
| Theorem | ltapd 8773 | 'Less than' implies apart. (Contributed by Jim Kingdon, 12-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → 𝐴 # 𝐵) | ||
| Theorem | leltapd 8774 | ≤ implies 'less than' is 'apart'. (Contributed by Jim Kingdon, 13-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 < 𝐵 ↔ 𝐵 # 𝐴)) | ||
| Theorem | ap0gt0 8775 | A nonnegative number is apart from zero if and only if it is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 # 0 ↔ 0 < 𝐴)) | ||
| Theorem | ap0gt0d 8776 | A nonzero nonnegative number is positive. (Contributed by Jim Kingdon, 11-Aug-2021.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴) & ⊢ (𝜑 → 𝐴 # 0) ⇒ ⊢ (𝜑 → 0 < 𝐴) | ||
| Theorem | apsub1 8777 | Subtraction respects apartness. Analogue of subcan2 8359 for apartness. (Contributed by Jim Kingdon, 6-Jan-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 # 𝐵 ↔ (𝐴 − 𝐶) # (𝐵 − 𝐶))) | ||
| Theorem | subap0 8778 | Two numbers being apart is equivalent to their difference being apart from zero. (Contributed by Jim Kingdon, 25-Dec-2022.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) # 0 ↔ 𝐴 # 𝐵)) | ||
| Theorem | subap0d 8779 | Two numbers apart from each other have difference apart from zero. (Contributed by Jim Kingdon, 12-Aug-2021.) (Proof shortened by BJ, 15-Aug-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 𝐵) ⇒ ⊢ (𝜑 → (𝐴 − 𝐵) # 0) | ||
| Theorem | cnstab 8780 | Equality of complex numbers is stable. Stability here means ¬ ¬ 𝐴 = 𝐵 → 𝐴 = 𝐵 as defined at df-stab 836. This theorem for real numbers is Proposition 5.2 of [BauerHanson], p. 27. (Contributed by Jim Kingdon, 1-Aug-2023.) (Proof shortened by BJ, 15-Aug-2024.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → STAB 𝐴 = 𝐵) | ||
| Theorem | aprcl 8781 | Reverse closure for apartness. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| ⊢ (𝐴 # 𝐵 → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | ||
| Theorem | apsscn 8782* | The points apart from a given point are complex numbers. (Contributed by Jim Kingdon, 19-Dec-2023.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵} ⊆ ℂ | ||
| Theorem | lt0ap0 8783 | A number which is less than zero is apart from zero. (Contributed by Jim Kingdon, 25-Feb-2024.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 < 0) → 𝐴 # 0) | ||
| Theorem | lt0ap0d 8784 | A real number less than zero is apart from zero. Deduction form. (Contributed by Jim Kingdon, 24-Feb-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
| Theorem | aptap 8785 | Complex apartness (as defined at df-ap 8717) is a tight apartness (as defined at df-tap 7424). (Contributed by Jim Kingdon, 16-Feb-2025.) |
| ⊢ # TAp ℂ | ||
| Theorem | recextlem1 8786 | Lemma for recexap 8788. (Contributed by Eric Schmidt, 23-May-2007.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) · (𝐴 − (i · 𝐵))) = ((𝐴 · 𝐴) + (𝐵 · 𝐵))) | ||
| Theorem | recexaplem2 8787 | Lemma for recexap 8788. (Contributed by Jim Kingdon, 20-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + (i · 𝐵)) # 0) → ((𝐴 · 𝐴) + (𝐵 · 𝐵)) # 0) | ||
| Theorem | recexap 8788* | Existence of reciprocal of nonzero complex number. (Contributed by Jim Kingdon, 20-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → ∃𝑥 ∈ ℂ (𝐴 · 𝑥) = 1) | ||
| Theorem | mulap0 8789 | The product of two numbers apart from zero is apart from zero. Lemma 2.15 of [Geuvers], p. 6. (Contributed by Jim Kingdon, 22-Feb-2020.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 # 0) ∧ (𝐵 ∈ ℂ ∧ 𝐵 # 0)) → (𝐴 · 𝐵) # 0) | ||
| Theorem | mulap0b 8790 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
| Theorem | mulap0i 8791 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐴 # 0 & ⊢ 𝐵 # 0 ⇒ ⊢ (𝐴 · 𝐵) # 0 | ||
| Theorem | mulap0bd 8792 | The product of two numbers apart from zero is apart from zero. Exercise 11.11 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) ⇒ ⊢ (𝜑 → ((𝐴 # 0 ∧ 𝐵 # 0) ↔ (𝐴 · 𝐵) # 0)) | ||
| Theorem | mulap0d 8793 | The product of two numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 23-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐴 # 0) & ⊢ (𝜑 → 𝐵 # 0) ⇒ ⊢ (𝜑 → (𝐴 · 𝐵) # 0) | ||
| Theorem | mulap0bad 8794 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8793 and consequence of mulap0bd 8792. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐴 # 0) | ||
| Theorem | mulap0bbd 8795 | A factor of a complex number apart from zero is apart from zero. Partial converse of mulap0d 8793 and consequence of mulap0bd 8792. (Contributed by Jim Kingdon, 24-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (𝐴 · 𝐵) # 0) ⇒ ⊢ (𝜑 → 𝐵 # 0) | ||
| Theorem | mulcanapd 8796 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcanap2d 8797 | Cancellation law for multiplication. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) ⇒ ⊢ (𝜑 → ((𝐴 · 𝐶) = (𝐵 · 𝐶) ↔ 𝐴 = 𝐵)) | ||
| Theorem | mulcanapad 8798 | Cancellation of a nonzero factor on the left in an equation. One-way deduction form of mulcanapd 8796. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐶 · 𝐴) = (𝐶 · 𝐵)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | mulcanap2ad 8799 | Cancellation of a nonzero factor on the right in an equation. One-way deduction form of mulcanap2d 8797. (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐶 # 0) & ⊢ (𝜑 → (𝐴 · 𝐶) = (𝐵 · 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
| Theorem | mulcanap 8800 | Cancellation law for multiplication (full theorem form). (Contributed by Jim Kingdon, 21-Feb-2020.) |
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 # 0)) → ((𝐶 · 𝐴) = (𝐶 · 𝐵) ↔ 𝐴 = 𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |