ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  reapneg GIF version

Theorem reapneg 8585
Description: Real negation respects apartness. (Contributed by Jim Kingdon, 13-Feb-2020.)
Assertion
Ref Expression
reapneg ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))

Proof of Theorem reapneg
StepHypRef Expression
1 reaplt 8576 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
2 ltneg 8450 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ -𝐵 < -𝐴))
3 ltneg 8450 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
43ancoms 268 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 < 𝐴 ↔ -𝐴 < -𝐵))
52, 4orbi12d 794 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 < 𝐵𝐵 < 𝐴) ↔ (-𝐵 < -𝐴 ∨ -𝐴 < -𝐵)))
61, 5bitrd 188 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (-𝐵 < -𝐴 ∨ -𝐴 < -𝐵)))
7 orcom 729 . . 3 ((-𝐵 < -𝐴 ∨ -𝐴 < -𝐵) ↔ (-𝐴 < -𝐵 ∨ -𝐵 < -𝐴))
86, 7bitrdi 196 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ (-𝐴 < -𝐵 ∨ -𝐵 < -𝐴)))
9 simpl 109 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐴 ∈ ℝ)
109renegcld 8368 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐴 ∈ ℝ)
11 simpr 110 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
1211renegcld 8368 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → -𝐵 ∈ ℝ)
13 reaplt 8576 . . 3 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → (-𝐴 # -𝐵 ↔ (-𝐴 < -𝐵 ∨ -𝐵 < -𝐴)))
1410, 12, 13syl2anc 411 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 # -𝐵 ↔ (-𝐴 < -𝐵 ∨ -𝐵 < -𝐴)))
158, 14bitr4d 191 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 # 𝐵 ↔ -𝐴 # -𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wcel 2160   class class class wbr 4018  cr 7841   < clt 8023  -cneg 8160   # cap 8569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-br 4019  df-opab 4080  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-ltxr 8028  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570
This theorem is referenced by:  apneg  8599
  Copyright terms: Public domain W3C validator