![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fiprsshashgt1 | GIF version |
Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
fiprsshashgt1 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1004 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐴 ≠ 𝐵) | |
2 | simpl1 1002 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐴 ∈ 𝑉) | |
3 | simpl2 1003 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐵 ∈ 𝑊) | |
4 | hashprg 10882 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | |
5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
6 | 1, 5 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → (♯‘{𝐴, 𝐵}) = 2) |
7 | 6 | adantr 276 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) = 2) |
8 | simplr 528 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 𝐶 ∈ Fin) | |
9 | prfidisj 6985 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
10 | 9 | ad2antrr 488 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ∈ Fin) |
11 | simpr 110 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
12 | fihashss 10890 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶)) | |
13 | 8, 10, 11, 12 | syl3anc 1249 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶)) |
14 | 7, 13 | eqbrtrrd 4054 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 2 ≤ (♯‘𝐶)) |
15 | 14 | ex 115 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 ⊆ wss 3154 {cpr 3620 class class class wbr 4030 ‘cfv 5255 Fincfn 6796 ≤ cle 8057 2c2 9035 ♯chash 10849 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-recs 6360 df-irdg 6425 df-frec 6446 df-1o 6471 df-oadd 6475 df-er 6589 df-en 6797 df-dom 6798 df-fin 6799 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-2 9043 df-n0 9244 df-z 9321 df-uz 9596 df-fz 10078 df-ihash 10850 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |