ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprsshashgt1 GIF version

Theorem fiprsshashgt1 11026
Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
fiprsshashgt1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))

Proof of Theorem fiprsshashgt1
StepHypRef Expression
1 simpl3 1026 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐴𝐵)
2 simpl1 1024 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐴𝑉)
3 simpl2 1025 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐵𝑊)
4 hashprg 11017 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
52, 3, 4syl2anc 411 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
61, 5mpbid 147 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → (♯‘{𝐴, 𝐵}) = 2)
76adantr 276 . . 3 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) = 2)
8 simplr 528 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 𝐶 ∈ Fin)
9 prfidisj 7077 . . . . 5 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
109ad2antrr 488 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ∈ Fin)
11 simpr 110 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
12 fihashss 11025 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶))
138, 10, 11, 12syl3anc 1271 . . 3 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶))
147, 13eqbrtrrd 4106 . 2 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 2 ≤ (♯‘𝐶))
1514ex 115 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wss 3197  {cpr 3667   class class class wbr 4082  cfv 5314  Fincfn 6877  cle 8170  2c2 9149  chash 10984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-frec 6527  df-1o 6552  df-oadd 6556  df-er 6670  df-en 6878  df-dom 6879  df-fin 6880  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-2 9157  df-n0 9358  df-z 9435  df-uz 9711  df-fz 10193  df-ihash 10985
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator