ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fiprsshashgt1 GIF version

Theorem fiprsshashgt1 10745
Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
Assertion
Ref Expression
fiprsshashgt1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))

Proof of Theorem fiprsshashgt1
StepHypRef Expression
1 simpl3 997 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐴𝐵)
2 simpl1 995 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐴𝑉)
3 simpl2 996 . . . . . 6 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → 𝐵𝑊)
4 hashprg 10736 . . . . . 6 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
52, 3, 4syl2anc 409 . . . . 5 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
61, 5mpbid 146 . . . 4 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → (♯‘{𝐴, 𝐵}) = 2)
76adantr 274 . . 3 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) = 2)
8 simplr 525 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 𝐶 ∈ Fin)
9 prfidisj 6902 . . . . 5 ((𝐴𝑉𝐵𝑊𝐴𝐵) → {𝐴, 𝐵} ∈ Fin)
109ad2antrr 485 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ∈ Fin)
11 simpr 109 . . . 4 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶)
12 fihashss 10744 . . . 4 ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶))
138, 10, 11, 12syl3anc 1233 . . 3 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶))
147, 13eqbrtrrd 4011 . 2 ((((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 2 ≤ (♯‘𝐶))
1514ex 114 1 (((𝐴𝑉𝐵𝑊𝐴𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  wcel 2141  wne 2340  wss 3121  {cpr 3582   class class class wbr 3987  cfv 5196  Fincfn 6716  cle 7948  2c2 8922  chash 10702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7858  ax-resscn 7859  ax-1cn 7860  ax-1re 7861  ax-icn 7862  ax-addcl 7863  ax-addrcl 7864  ax-mulcl 7865  ax-addcom 7867  ax-addass 7869  ax-distr 7871  ax-i2m1 7872  ax-0lt1 7873  ax-0id 7875  ax-rnegex 7876  ax-cnre 7878  ax-pre-ltirr 7879  ax-pre-ltwlin 7880  ax-pre-lttrn 7881  ax-pre-apti 7882  ax-pre-ltadd 7883
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5807  df-ov 5854  df-oprab 5855  df-mpo 5856  df-1st 6117  df-2nd 6118  df-recs 6282  df-irdg 6347  df-frec 6368  df-1o 6393  df-oadd 6397  df-er 6511  df-en 6717  df-dom 6718  df-fin 6719  df-pnf 7949  df-mnf 7950  df-xr 7951  df-ltxr 7952  df-le 7953  df-sub 8085  df-neg 8086  df-inn 8872  df-2 8930  df-n0 9129  df-z 9206  df-uz 9481  df-fz 9959  df-ihash 10703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator