![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fiprsshashgt1 | GIF version |
Description: The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.) |
Ref | Expression |
---|---|
fiprsshashgt1 | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1003 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐴 ≠ 𝐵) | |
2 | simpl1 1001 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐴 ∈ 𝑉) | |
3 | simpl2 1002 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → 𝐵 ∈ 𝑊) | |
4 | hashprg 10802 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) | |
5 | 2, 3, 4 | syl2anc 411 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
6 | 1, 5 | mpbid 147 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → (♯‘{𝐴, 𝐵}) = 2) |
7 | 6 | adantr 276 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) = 2) |
8 | simplr 528 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 𝐶 ∈ Fin) | |
9 | prfidisj 6940 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) → {𝐴, 𝐵} ∈ Fin) | |
10 | 9 | ad2antrr 488 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ∈ Fin) |
11 | simpr 110 | . . . 4 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → {𝐴, 𝐵} ⊆ 𝐶) | |
12 | fihashss 10810 | . . . 4 ⊢ ((𝐶 ∈ Fin ∧ {𝐴, 𝐵} ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶)) | |
13 | 8, 10, 11, 12 | syl3anc 1248 | . . 3 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → (♯‘{𝐴, 𝐵}) ≤ (♯‘𝐶)) |
14 | 7, 13 | eqbrtrrd 4039 | . 2 ⊢ ((((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) ∧ {𝐴, 𝐵} ⊆ 𝐶) → 2 ≤ (♯‘𝐶)) |
15 | 14 | ex 115 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐴 ≠ 𝐵) ∧ 𝐶 ∈ Fin) → ({𝐴, 𝐵} ⊆ 𝐶 → 2 ≤ (♯‘𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 979 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ⊆ wss 3141 {cpr 3605 class class class wbr 4015 ‘cfv 5228 Fincfn 6754 ≤ cle 8007 2c2 8984 ♯chash 10769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-addass 7927 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-2 8992 df-n0 9191 df-z 9268 df-uz 9543 df-fz 10023 df-ihash 10770 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |