| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpdsg | GIF version | ||
| Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpds.2 | ⊢ 𝐵 = (dist‘𝑅) |
| Ref | Expression |
|---|---|
| mgpdsg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpds.2 | . 2 ⊢ 𝐵 = (dist‘𝑅) | |
| 2 | mulrslid 13160 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 13054 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | dsslid 13245 | . . . . 5 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
| 5 | dsndxnplusgndx 13249 | . . . . 5 ⊢ (dist‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 13140 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 8 | 4, 5, 7 | setsslnid 13079 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2229 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13881 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 13 | 12 | fveq2d 5630 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑀) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 14 | 9, 13 | eqtr4d 2265 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘𝑀)) |
| 15 | 1, 14 | eqtrid 2274 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 〈cop 3669 ‘cfv 5317 (class class class)co 6000 ℕcn 9106 ndxcnx 13024 sSet csts 13025 Slot cslot 13026 +gcplusg 13105 .rcmulr 13106 distcds 13114 mulGrpcmgp 13878 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fn 5320 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-n0 9366 df-z 9443 df-dec 9575 df-ndx 13030 df-slot 13031 df-sets 13034 df-plusg 13118 df-mulr 13119 df-ds 13127 df-mgp 13879 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |