![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mgpdsg | GIF version |
Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpds.2 | ⊢ 𝐵 = (dist‘𝑅) |
Ref | Expression |
---|---|
mgpdsg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpds.2 | . 2 ⊢ 𝐵 = (dist‘𝑅) | |
2 | mulrslid 12749 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
3 | 2 | slotex 12645 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
4 | dsslid 12830 | . . . . 5 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
5 | dsndxnplusgndx 12834 | . . . . 5 ⊢ (dist‘ndx) ≠ (+g‘ndx) | |
6 | plusgslid 12730 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
8 | 4, 5, 7 | setsslnid 12670 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
11 | eqid 2193 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
12 | 10, 11 | mgpvalg 13419 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
13 | 12 | fveq2d 5558 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑀) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
14 | 9, 13 | eqtr4d 2229 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘𝑀)) |
15 | 1, 14 | eqtrid 2238 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 Vcvv 2760 〈cop 3621 ‘cfv 5254 (class class class)co 5918 ℕcn 8982 ndxcnx 12615 sSet csts 12616 Slot cslot 12617 +gcplusg 12695 .rcmulr 12696 distcds 12704 mulGrpcmgp 13416 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-iota 5215 df-fun 5256 df-fn 5257 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-9 9048 df-n0 9241 df-z 9318 df-dec 9449 df-ndx 12621 df-slot 12622 df-sets 12625 df-plusg 12708 df-mulr 12709 df-ds 12717 df-mgp 13417 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |