| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mgpdsg | GIF version | ||
| Description: Distance function of the multiplication group. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| mgpbas.1 | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpds.2 | ⊢ 𝐵 = (dist‘𝑅) |
| Ref | Expression |
|---|---|
| mgpdsg | ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpds.2 | . 2 ⊢ 𝐵 = (dist‘𝑅) | |
| 2 | mulrslid 12882 | . . . . 5 ⊢ (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ) | |
| 3 | 2 | slotex 12778 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (.r‘𝑅) ∈ V) |
| 4 | dsslid 12967 | . . . . 5 ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | |
| 5 | dsndxnplusgndx 12971 | . . . . 5 ⊢ (dist‘ndx) ≠ (+g‘ndx) | |
| 6 | plusgslid 12863 | . . . . . 6 ⊢ (+g = Slot (+g‘ndx) ∧ (+g‘ndx) ∈ ℕ) | |
| 7 | 6 | simpri 113 | . . . . 5 ⊢ (+g‘ndx) ∈ ℕ |
| 8 | 4, 5, 7 | setsslnid 12803 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ (.r‘𝑅) ∈ V) → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 9 | 3, 8 | mpdan 421 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 10 | mgpbas.1 | . . . . 5 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 11 | eqid 2204 | . . . . 5 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 12 | 10, 11 | mgpvalg 13603 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → 𝑀 = (𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉)) |
| 13 | 12 | fveq2d 5574 | . . 3 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑀) = (dist‘(𝑅 sSet 〈(+g‘ndx), (.r‘𝑅)〉))) |
| 14 | 9, 13 | eqtr4d 2240 | . 2 ⊢ (𝑅 ∈ 𝑉 → (dist‘𝑅) = (dist‘𝑀)) |
| 15 | 1, 14 | eqtrid 2249 | 1 ⊢ (𝑅 ∈ 𝑉 → 𝐵 = (dist‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 〈cop 3635 ‘cfv 5268 (class class class)co 5934 ℕcn 9018 ndxcnx 12748 sSet csts 12749 Slot cslot 12750 +gcplusg 12828 .rcmulr 12829 distcds 12837 mulGrpcmgp 13600 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-iota 5229 df-fun 5270 df-fn 5271 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-5 9080 df-6 9081 df-7 9082 df-8 9083 df-9 9084 df-n0 9278 df-z 9355 df-dec 9487 df-ndx 12754 df-slot 12755 df-sets 12758 df-plusg 12841 df-mulr 12842 df-ds 12850 df-mgp 13601 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |