| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lcmid | GIF version | ||
| Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) |
| Ref | Expression |
|---|---|
| lcmid | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcm0val 12431 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 0) = 0) |
| 3 | oveq2 5959 | . . . . 5 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0)) | |
| 4 | fveq2 5583 | . . . . . 6 ⊢ (𝑀 = 0 → (abs‘𝑀) = (abs‘0)) | |
| 5 | abs0 11413 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 6 | 4, 5 | eqtrdi 2255 | . . . . 5 ⊢ (𝑀 = 0 → (abs‘𝑀) = 0) |
| 7 | 3, 6 | eqeq12d 2221 | . . . 4 ⊢ (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) |
| 8 | 7 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) |
| 9 | 2, 8 | mpbird 167 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| 10 | df-ne 2378 | . . 3 ⊢ (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0) | |
| 11 | lcmcl 12438 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0) | |
| 12 | 11 | nn0cnd 9357 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ) |
| 13 | 12 | anidms 397 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ) |
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ) |
| 15 | zabscl 11441 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ) | |
| 16 | 15 | zcnd 9503 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ) |
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ) |
| 18 | zcn 9384 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 19 | 18 | adantr 276 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) |
| 20 | simpr 110 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
| 21 | 19, 20 | absne0d 11542 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0) |
| 22 | 0zd 9391 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 0 ∈ ℤ) | |
| 23 | zapne 9454 | . . . . . 6 ⊢ (((abs‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0)) | |
| 24 | 15, 22, 23 | syl2an2r 595 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0)) |
| 25 | 21, 24 | mpbird 167 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) # 0) |
| 26 | lcmgcd 12444 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) | |
| 27 | 26 | anidms 397 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) |
| 28 | gcdid 12351 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) | |
| 29 | 28 | oveq2d 5967 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀))) |
| 30 | 18, 18 | absmuld 11549 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 31 | 27, 29, 30 | 3eqtr3d 2247 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 32 | 31 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) |
| 33 | 14, 17, 17, 25, 32 | mulcanap2ad 8744 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| 34 | 10, 33 | sylan2br 288 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ ¬ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| 35 | 0z 9390 | . . . 4 ⊢ 0 ∈ ℤ | |
| 36 | zdceq 9455 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0) | |
| 37 | 35, 36 | mpan2 425 | . . 3 ⊢ (𝑀 ∈ ℤ → DECID 𝑀 = 0) |
| 38 | exmiddc 838 | . . 3 ⊢ (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) | |
| 39 | 37, 38 | syl 14 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) |
| 40 | 9, 34, 39 | mpjaodan 800 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 DECID wdc 836 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 class class class wbr 4047 ‘cfv 5276 (class class class)co 5951 ℂcc 7930 0cc0 7932 · cmul 7937 # cap 8661 ℤcz 9379 abscabs 11352 gcd cgcd 12318 lcm clcm 12426 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-frec 6484 df-sup 7093 df-inf 7094 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-fl 10420 df-mod 10475 df-seqfrec 10600 df-exp 10691 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-dvds 12143 df-gcd 12319 df-lcm 12427 |
| This theorem is referenced by: lcmgcdeq 12449 |
| Copyright terms: Public domain | W3C validator |