ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmid GIF version

Theorem lcmid 12012
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmid (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))

Proof of Theorem lcmid
StepHypRef Expression
1 lcm0val 11997 . . . 4 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
21adantr 274 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 0) = 0)
3 oveq2 5850 . . . . 5 (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0))
4 fveq2 5486 . . . . . 6 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
5 abs0 11000 . . . . . 6 (abs‘0) = 0
64, 5eqtrdi 2215 . . . . 5 (𝑀 = 0 → (abs‘𝑀) = 0)
73, 6eqeq12d 2180 . . . 4 (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0))
87adantl 275 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0))
92, 8mpbird 166 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
10 df-ne 2337 . . 3 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
11 lcmcl 12004 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0)
1211nn0cnd 9169 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ)
1312anidms 395 . . . . 5 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ)
1413adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ)
15 zabscl 11028 . . . . . 6 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
1615zcnd 9314 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
1716adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
18 zcn 9196 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1918adantr 274 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
20 simpr 109 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
2119, 20absne0d 11129 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
22 0zd 9203 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 0 ∈ ℤ)
23 zapne 9265 . . . . . 6 (((abs‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0))
2415, 22, 23syl2an2r 585 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0))
2521, 24mpbird 166 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) # 0)
26 lcmgcd 12010 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
2726anidms 395 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
28 gcdid 11919 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2928oveq2d 5858 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀)))
3018, 18absmuld 11136 . . . . . 6 (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3127, 29, 303eqtr3d 2206 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3231adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3314, 17, 17, 25, 32mulcanap2ad 8561 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
3410, 33sylan2br 286 . 2 ((𝑀 ∈ ℤ ∧ ¬ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
35 0z 9202 . . . 4 0 ∈ ℤ
36 zdceq 9266 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
3735, 36mpan2 422 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
38 exmiddc 826 . . 3 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
3937, 38syl 14 . 2 (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
409, 34, 39mpjaodan 788 1 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698  DECID wdc 824   = wceq 1343  wcel 2136  wne 2336   class class class wbr 3982  cfv 5188  (class class class)co 5842  cc 7751  0cc0 7753   · cmul 7758   # cap 8479  cz 9191  abscabs 10939   gcd cgcd 11875   lcm clcm 11992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-stab 821  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-fzo 10078  df-fl 10205  df-mod 10258  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-dvds 11728  df-gcd 11876  df-lcm 11993
This theorem is referenced by:  lcmgcdeq  12015
  Copyright terms: Public domain W3C validator