| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > lcmid | GIF version | ||
| Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| lcmid | ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | lcm0val 12233 | . . . 4 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0) | |
| 2 | 1 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 0) = 0) | 
| 3 | oveq2 5930 | . . . . 5 ⊢ (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0)) | |
| 4 | fveq2 5558 | . . . . . 6 ⊢ (𝑀 = 0 → (abs‘𝑀) = (abs‘0)) | |
| 5 | abs0 11223 | . . . . . 6 ⊢ (abs‘0) = 0 | |
| 6 | 4, 5 | eqtrdi 2245 | . . . . 5 ⊢ (𝑀 = 0 → (abs‘𝑀) = 0) | 
| 7 | 3, 6 | eqeq12d 2211 | . . . 4 ⊢ (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) | 
| 8 | 7 | adantl 277 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0)) | 
| 9 | 2, 8 | mpbird 167 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) | 
| 10 | df-ne 2368 | . . 3 ⊢ (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0) | |
| 11 | lcmcl 12240 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0) | |
| 12 | 11 | nn0cnd 9304 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ) | 
| 13 | 12 | anidms 397 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ) | 
| 14 | 13 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ) | 
| 15 | zabscl 11251 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ) | |
| 16 | 15 | zcnd 9449 | . . . . 5 ⊢ (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ) | 
| 17 | 16 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ) | 
| 18 | zcn 9331 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 19 | 18 | adantr 276 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ) | 
| 20 | simpr 110 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0) | |
| 21 | 19, 20 | absne0d 11352 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0) | 
| 22 | 0zd 9338 | . . . . . 6 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 0 ∈ ℤ) | |
| 23 | zapne 9400 | . . . . . 6 ⊢ (((abs‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0)) | |
| 24 | 15, 22, 23 | syl2an2r 595 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0)) | 
| 25 | 21, 24 | mpbird 167 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) # 0) | 
| 26 | lcmgcd 12246 | . . . . . . 7 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) | |
| 27 | 26 | anidms 397 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀))) | 
| 28 | gcdid 12153 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀)) | |
| 29 | 28 | oveq2d 5938 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀))) | 
| 30 | 18, 18 | absmuld 11359 | . . . . . 6 ⊢ (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) | 
| 31 | 27, 29, 30 | 3eqtr3d 2237 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) | 
| 32 | 31 | adantr 276 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀))) | 
| 33 | 14, 17, 17, 25, 32 | mulcanap2ad 8691 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) | 
| 34 | 10, 33 | sylan2br 288 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ ¬ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀)) | 
| 35 | 0z 9337 | . . . 4 ⊢ 0 ∈ ℤ | |
| 36 | zdceq 9401 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0) | |
| 37 | 35, 36 | mpan2 425 | . . 3 ⊢ (𝑀 ∈ ℤ → DECID 𝑀 = 0) | 
| 38 | exmiddc 837 | . . 3 ⊢ (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) | |
| 39 | 37, 38 | syl 14 | . 2 ⊢ (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0)) | 
| 40 | 9, 34, 39 | mpjaodan 799 | 1 ⊢ (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀)) | 
| Colors of variables: wff set class | 
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ≠ wne 2367 class class class wbr 4033 ‘cfv 5258 (class class class)co 5922 ℂcc 7877 0cc0 7879 · cmul 7884 # cap 8608 ℤcz 9326 abscabs 11162 gcd cgcd 12120 lcm clcm 12228 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-mulrcl 7978 ax-addcom 7979 ax-mulcom 7980 ax-addass 7981 ax-mulass 7982 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-1rid 7986 ax-0id 7987 ax-rnegex 7988 ax-precex 7989 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 ax-pre-mulgt0 7996 ax-pre-mulext 7997 ax-arch 7998 ax-caucvg 7999 | 
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-po 4331 df-iso 4332 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-isom 5267 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-frec 6449 df-sup 7050 df-inf 7051 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-reap 8602 df-ap 8609 df-div 8700 df-inn 8991 df-2 9049 df-3 9050 df-4 9051 df-n0 9250 df-z 9327 df-uz 9602 df-q 9694 df-rp 9729 df-fz 10084 df-fzo 10218 df-fl 10360 df-mod 10415 df-seqfrec 10540 df-exp 10631 df-cj 11007 df-re 11008 df-im 11009 df-rsqrt 11163 df-abs 11164 df-dvds 11953 df-gcd 12121 df-lcm 12229 | 
| This theorem is referenced by: lcmgcdeq 12251 | 
| Copyright terms: Public domain | W3C validator |