ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmid GIF version

Theorem lcmid 11772
Description: The lcm of an integer and itself is its absolute value. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmid (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))

Proof of Theorem lcmid
StepHypRef Expression
1 lcm0val 11757 . . . 4 (𝑀 ∈ ℤ → (𝑀 lcm 0) = 0)
21adantr 274 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 0) = 0)
3 oveq2 5782 . . . . 5 (𝑀 = 0 → (𝑀 lcm 𝑀) = (𝑀 lcm 0))
4 fveq2 5421 . . . . . 6 (𝑀 = 0 → (abs‘𝑀) = (abs‘0))
5 abs0 10842 . . . . . 6 (abs‘0) = 0
64, 5syl6eq 2188 . . . . 5 (𝑀 = 0 → (abs‘𝑀) = 0)
73, 6eqeq12d 2154 . . . 4 (𝑀 = 0 → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0))
87adantl 275 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → ((𝑀 lcm 𝑀) = (abs‘𝑀) ↔ (𝑀 lcm 0) = 0))
92, 8mpbird 166 . 2 ((𝑀 ∈ ℤ ∧ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
10 df-ne 2309 . . 3 (𝑀 ≠ 0 ↔ ¬ 𝑀 = 0)
11 lcmcl 11764 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℕ0)
1211nn0cnd 9044 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑀 lcm 𝑀) ∈ ℂ)
1312anidms 394 . . . . 5 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) ∈ ℂ)
1413adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) ∈ ℂ)
15 zabscl 10870 . . . . . 6 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
1615zcnd 9186 . . . . 5 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℂ)
1716adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ∈ ℂ)
18 zcn 9071 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
1918adantr 274 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ∈ ℂ)
20 simpr 109 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 𝑀 ≠ 0)
2119, 20absne0d 10971 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) ≠ 0)
22 0zd 9078 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → 0 ∈ ℤ)
23 zapne 9137 . . . . . 6 (((abs‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0))
2415, 22, 23syl2an2r 584 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((abs‘𝑀) # 0 ↔ (abs‘𝑀) ≠ 0))
2521, 24mpbird 166 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (abs‘𝑀) # 0)
26 lcmgcd 11770 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
2726anidms 394 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = (abs‘(𝑀 · 𝑀)))
28 gcdid 11685 . . . . . . 7 (𝑀 ∈ ℤ → (𝑀 gcd 𝑀) = (abs‘𝑀))
2928oveq2d 5790 . . . . . 6 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (𝑀 gcd 𝑀)) = ((𝑀 lcm 𝑀) · (abs‘𝑀)))
3018, 18absmuld 10978 . . . . . 6 (𝑀 ∈ ℤ → (abs‘(𝑀 · 𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3127, 29, 303eqtr3d 2180 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3231adantr 274 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → ((𝑀 lcm 𝑀) · (abs‘𝑀)) = ((abs‘𝑀) · (abs‘𝑀)))
3314, 17, 17, 25, 32mulcanap2ad 8437 . . 3 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
3410, 33sylan2br 286 . 2 ((𝑀 ∈ ℤ ∧ ¬ 𝑀 = 0) → (𝑀 lcm 𝑀) = (abs‘𝑀))
35 0z 9077 . . . 4 0 ∈ ℤ
36 zdceq 9138 . . . 4 ((𝑀 ∈ ℤ ∧ 0 ∈ ℤ) → DECID 𝑀 = 0)
3735, 36mpan2 421 . . 3 (𝑀 ∈ ℤ → DECID 𝑀 = 0)
38 exmiddc 821 . . 3 (DECID 𝑀 = 0 → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
3937, 38syl 14 . 2 (𝑀 ∈ ℤ → (𝑀 = 0 ∨ ¬ 𝑀 = 0))
409, 34, 39mpjaodan 787 1 (𝑀 ∈ ℤ → (𝑀 lcm 𝑀) = (abs‘𝑀))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819   = wceq 1331  wcel 1480  wne 2308   class class class wbr 3929  cfv 5123  (class class class)co 5774  cc 7630  0cc0 7632   · cmul 7637   # cap 8355  cz 9066  abscabs 10781   gcd cgcd 11646   lcm clcm 11752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750  ax-arch 7751  ax-caucvg 7752
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-inf 6872  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067  df-uz 9339  df-q 9424  df-rp 9454  df-fz 9803  df-fzo 9932  df-fl 10055  df-mod 10108  df-seqfrec 10231  df-exp 10305  df-cj 10626  df-re 10627  df-im 10628  df-rsqrt 10782  df-abs 10783  df-dvds 11505  df-gcd 11647  df-lcm 11753
This theorem is referenced by:  lcmgcdeq  11775
  Copyright terms: Public domain W3C validator