Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 4sqlem9 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
4sqlem9.5 | ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) |
Ref | Expression |
---|---|
4sqlem9 | ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem9.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) | |
2 | 4sqlem5.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | 4sqlem5.3 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 4sqlem5.4 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 2, 3, 4 | 4sqlem5 12347 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 112 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 6 | zcnd 9349 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | sqeq0 10553 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) | |
9 | 7, 8 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) |
10 | 9 | biimpa 296 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0) |
11 | 1, 10 | syldan 282 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 0) |
12 | 11 | oveq2d 5881 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = (𝐴 − 0)) |
13 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℤ) |
14 | 13 | zcnd 9349 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℂ) |
15 | 14 | subid1d 8231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 0) = 𝐴) |
16 | 12, 15 | eqtrd 2208 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = 𝐴) |
17 | 16 | oveq1d 5880 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) = (𝐴 / 𝑀)) |
18 | 5 | simprd 114 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
19 | 18 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
20 | 17, 19 | eqeltrrd 2253 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 / 𝑀) ∈ ℤ) |
21 | 3 | nnzd 9347 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | 3 | nnne0d 8937 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 0) |
23 | dvdsval2 11765 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) | |
24 | 21, 22, 2, 23 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
26 | 20, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∥ 𝐴) |
27 | dvdssq 11999 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
28 | 21, 13, 27 | syl2an2r 595 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
29 | 26, 28 | mpbid 147 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 class class class wbr 3998 (class class class)co 5865 ℂcc 7784 0cc0 7786 + caddc 7789 − cmin 8102 / cdiv 8602 ℕcn 8892 2c2 8943 ℤcz 9226 mod cmo 10292 ↑cexp 10489 ∥ cdvds 11762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-nul 4124 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-iinf 4581 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 ax-arch 7905 ax-caucvg 7906 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-tr 4097 df-id 4287 df-po 4290 df-iso 4291 df-iord 4360 df-on 4362 df-ilim 4363 df-suc 4365 df-iom 4584 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-1st 6131 df-2nd 6132 df-recs 6296 df-frec 6382 df-sup 6973 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-n0 9150 df-z 9227 df-uz 9502 df-q 9593 df-rp 9625 df-fz 9980 df-fzo 10113 df-fl 10240 df-mod 10293 df-seqfrec 10416 df-exp 10490 df-cj 10819 df-re 10820 df-im 10821 df-rsqrt 10975 df-abs 10976 df-dvds 11763 df-gcd 11911 |
This theorem is referenced by: 2sqlem8a 14029 |
Copyright terms: Public domain | W3C validator |