ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem9 GIF version

Theorem 4sqlem9 12417
Description: Lemma for 4sq 12441. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem9.5 ((𝜑𝜓) → (𝐵↑2) = 0)
Assertion
Ref Expression
4sqlem9 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))

Proof of Theorem 4sqlem9
StepHypRef Expression
1 4sqlem9.5 . . . . . . . 8 ((𝜑𝜓) → (𝐵↑2) = 0)
2 4sqlem5.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
3 4sqlem5.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4 4sqlem5.4 . . . . . . . . . . . . 13 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
52, 3, 44sqlem5 12413 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 112 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
76zcnd 9405 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
8 sqeq0 10613 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
97, 8syl 14 . . . . . . . . 9 (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
109biimpa 296 . . . . . . . 8 ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0)
111, 10syldan 282 . . . . . . 7 ((𝜑𝜓) → 𝐵 = 0)
1211oveq2d 5911 . . . . . 6 ((𝜑𝜓) → (𝐴𝐵) = (𝐴 − 0))
132adantr 276 . . . . . . . 8 ((𝜑𝜓) → 𝐴 ∈ ℤ)
1413zcnd 9405 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
1514subid1d 8286 . . . . . 6 ((𝜑𝜓) → (𝐴 − 0) = 𝐴)
1612, 15eqtrd 2222 . . . . 5 ((𝜑𝜓) → (𝐴𝐵) = 𝐴)
1716oveq1d 5910 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) = (𝐴 / 𝑀))
185simprd 114 . . . . 5 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
1918adantr 276 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) ∈ ℤ)
2017, 19eqeltrrd 2267 . . 3 ((𝜑𝜓) → (𝐴 / 𝑀) ∈ ℤ)
213nnzd 9403 . . . . 5 (𝜑𝑀 ∈ ℤ)
223nnne0d 8993 . . . . 5 (𝜑𝑀 ≠ 0)
23 dvdsval2 11828 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2421, 22, 2, 23syl3anc 1249 . . . 4 (𝜑 → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2524adantr 276 . . 3 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2620, 25mpbird 167 . 2 ((𝜑𝜓) → 𝑀𝐴)
27 dvdssq 12063 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2821, 13, 27syl2an2r 595 . 2 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2926, 28mpbid 147 1 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2160  wne 2360   class class class wbr 4018  (class class class)co 5895  cc 7838  0cc0 7840   + caddc 7843  cmin 8157   / cdiv 8658  cn 8948  2c2 8999  cz 9282   mod cmo 10352  cexp 10549  cdvds 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605  ax-cnex 7931  ax-resscn 7932  ax-1cn 7933  ax-1re 7934  ax-icn 7935  ax-addcl 7936  ax-addrcl 7937  ax-mulcl 7938  ax-mulrcl 7939  ax-addcom 7940  ax-mulcom 7941  ax-addass 7942  ax-mulass 7943  ax-distr 7944  ax-i2m1 7945  ax-0lt1 7946  ax-1rid 7947  ax-0id 7948  ax-rnegex 7949  ax-precex 7950  ax-cnre 7951  ax-pre-ltirr 7952  ax-pre-ltwlin 7953  ax-pre-lttrn 7954  ax-pre-apti 7955  ax-pre-ltadd 7956  ax-pre-mulgt0 7957  ax-pre-mulext 7958  ax-arch 7959  ax-caucvg 7960
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-ilim 4387  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-riota 5851  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-frec 6415  df-sup 7012  df-pnf 8023  df-mnf 8024  df-xr 8025  df-ltxr 8026  df-le 8027  df-sub 8159  df-neg 8160  df-reap 8561  df-ap 8568  df-div 8659  df-inn 8949  df-2 9007  df-3 9008  df-4 9009  df-n0 9206  df-z 9283  df-uz 9558  df-q 9649  df-rp 9683  df-fz 10038  df-fzo 10172  df-fl 10300  df-mod 10353  df-seqfrec 10476  df-exp 10550  df-cj 10882  df-re 10883  df-im 10884  df-rsqrt 11038  df-abs 11039  df-dvds 11826  df-gcd 11975
This theorem is referenced by:  4sqlem16  12437  2sqlem8a  14922
  Copyright terms: Public domain W3C validator