ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlem9 GIF version

Theorem 4sqlem9 12565
Description: Lemma for 4sq 12589. (Contributed by Mario Carneiro, 15-Jul-2014.)
Hypotheses
Ref Expression
4sqlem5.2 (𝜑𝐴 ∈ ℤ)
4sqlem5.3 (𝜑𝑀 ∈ ℕ)
4sqlem5.4 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
4sqlem9.5 ((𝜑𝜓) → (𝐵↑2) = 0)
Assertion
Ref Expression
4sqlem9 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))

Proof of Theorem 4sqlem9
StepHypRef Expression
1 4sqlem9.5 . . . . . . . 8 ((𝜑𝜓) → (𝐵↑2) = 0)
2 4sqlem5.2 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℤ)
3 4sqlem5.3 . . . . . . . . . . . . 13 (𝜑𝑀 ∈ ℕ)
4 4sqlem5.4 . . . . . . . . . . . . 13 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2))
52, 3, 44sqlem5 12561 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴𝐵) / 𝑀) ∈ ℤ))
65simpld 112 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℤ)
76zcnd 9451 . . . . . . . . . 10 (𝜑𝐵 ∈ ℂ)
8 sqeq0 10696 . . . . . . . . . 10 (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
97, 8syl 14 . . . . . . . . 9 (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0))
109biimpa 296 . . . . . . . 8 ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0)
111, 10syldan 282 . . . . . . 7 ((𝜑𝜓) → 𝐵 = 0)
1211oveq2d 5939 . . . . . 6 ((𝜑𝜓) → (𝐴𝐵) = (𝐴 − 0))
132adantr 276 . . . . . . . 8 ((𝜑𝜓) → 𝐴 ∈ ℤ)
1413zcnd 9451 . . . . . . 7 ((𝜑𝜓) → 𝐴 ∈ ℂ)
1514subid1d 8328 . . . . . 6 ((𝜑𝜓) → (𝐴 − 0) = 𝐴)
1612, 15eqtrd 2229 . . . . 5 ((𝜑𝜓) → (𝐴𝐵) = 𝐴)
1716oveq1d 5938 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) = (𝐴 / 𝑀))
185simprd 114 . . . . 5 (𝜑 → ((𝐴𝐵) / 𝑀) ∈ ℤ)
1918adantr 276 . . . 4 ((𝜑𝜓) → ((𝐴𝐵) / 𝑀) ∈ ℤ)
2017, 19eqeltrrd 2274 . . 3 ((𝜑𝜓) → (𝐴 / 𝑀) ∈ ℤ)
213nnzd 9449 . . . . 5 (𝜑𝑀 ∈ ℤ)
223nnne0d 9037 . . . . 5 (𝜑𝑀 ≠ 0)
23 dvdsval2 11957 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2421, 22, 2, 23syl3anc 1249 . . . 4 (𝜑 → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2524adantr 276 . . 3 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ))
2620, 25mpbird 167 . 2 ((𝜑𝜓) → 𝑀𝐴)
27 dvdssq 12208 . . 3 ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2821, 13, 27syl2an2r 595 . 2 ((𝜑𝜓) → (𝑀𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2)))
2926, 28mpbid 147 1 ((𝜑𝜓) → (𝑀↑2) ∥ (𝐴↑2))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wne 2367   class class class wbr 4034  (class class class)co 5923  cc 7879  0cc0 7881   + caddc 7884  cmin 8199   / cdiv 8701  cn 8992  2c2 9043  cz 9328   mod cmo 10416  cexp 10632  cdvds 11954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999  ax-arch 8000  ax-caucvg 8001
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-sup 7051  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993  df-2 9051  df-3 9052  df-4 9053  df-n0 9252  df-z 9329  df-uz 9604  df-q 9696  df-rp 9731  df-fz 10086  df-fzo 10220  df-fl 10362  df-mod 10417  df-seqfrec 10542  df-exp 10633  df-cj 11009  df-re 11010  df-im 11011  df-rsqrt 11165  df-abs 11166  df-dvds 11955  df-gcd 12131
This theorem is referenced by:  4sqlem16  12585  2sqlem8a  15373
  Copyright terms: Public domain W3C validator