![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 4sqlem9 | GIF version |
Description: Lemma for 4sq (not yet proved here) . (Contributed by Mario Carneiro, 15-Jul-2014.) |
Ref | Expression |
---|---|
4sqlem5.2 | ⊢ (𝜑 → 𝐴 ∈ ℤ) |
4sqlem5.3 | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
4sqlem5.4 | ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) |
4sqlem9.5 | ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) |
Ref | Expression |
---|---|
4sqlem9 | ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4sqlem9.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → (𝐵↑2) = 0) | |
2 | 4sqlem5.2 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝐴 ∈ ℤ) | |
3 | 4sqlem5.3 | . . . . . . . . . . . . 13 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
4 | 4sqlem5.4 | . . . . . . . . . . . . 13 ⊢ 𝐵 = (((𝐴 + (𝑀 / 2)) mod 𝑀) − (𝑀 / 2)) | |
5 | 2, 3, 4 | 4sqlem5 12371 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐵 ∈ ℤ ∧ ((𝐴 − 𝐵) / 𝑀) ∈ ℤ)) |
6 | 5 | simpld 112 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐵 ∈ ℤ) |
7 | 6 | zcnd 9371 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
8 | sqeq0 10577 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℂ → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) | |
9 | 7, 8 | syl 14 | . . . . . . . . 9 ⊢ (𝜑 → ((𝐵↑2) = 0 ↔ 𝐵 = 0)) |
10 | 9 | biimpa 296 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐵↑2) = 0) → 𝐵 = 0) |
11 | 1, 10 | syldan 282 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐵 = 0) |
12 | 11 | oveq2d 5887 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = (𝐴 − 0)) |
13 | 2 | adantr 276 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℤ) |
14 | 13 | zcnd 9371 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ ℂ) |
15 | 14 | subid1d 8252 | . . . . . 6 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 0) = 𝐴) |
16 | 12, 15 | eqtrd 2210 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 − 𝐵) = 𝐴) |
17 | 16 | oveq1d 5886 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) = (𝐴 / 𝑀)) |
18 | 5 | simprd 114 | . . . . 5 ⊢ (𝜑 → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
19 | 18 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ 𝜓) → ((𝐴 − 𝐵) / 𝑀) ∈ ℤ) |
20 | 17, 19 | eqeltrrd 2255 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝐴 / 𝑀) ∈ ℤ) |
21 | 3 | nnzd 9369 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
22 | 3 | nnne0d 8959 | . . . . 5 ⊢ (𝜑 → 𝑀 ≠ 0) |
23 | dvdsval2 11789 | . . . . 5 ⊢ ((𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) | |
24 | 21, 22, 2, 23 | syl3anc 1238 | . . . 4 ⊢ (𝜑 → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
25 | 24 | adantr 276 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝐴 / 𝑀) ∈ ℤ)) |
26 | 20, 25 | mpbird 167 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝑀 ∥ 𝐴) |
27 | dvdssq 12023 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) | |
28 | 21, 13, 27 | syl2an2r 595 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝑀 ∥ 𝐴 ↔ (𝑀↑2) ∥ (𝐴↑2))) |
29 | 26, 28 | mpbid 147 | 1 ⊢ ((𝜑 ∧ 𝜓) → (𝑀↑2) ∥ (𝐴↑2)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 ≠ wne 2347 class class class wbr 4002 (class class class)co 5871 ℂcc 7805 0cc0 7807 + caddc 7810 − cmin 8123 / cdiv 8624 ℕcn 8914 2c2 8965 ℤcz 9248 mod cmo 10316 ↑cexp 10513 ∥ cdvds 11786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4117 ax-sep 4120 ax-nul 4128 ax-pow 4173 ax-pr 4208 ax-un 4432 ax-setind 4535 ax-iinf 4586 ax-cnex 7898 ax-resscn 7899 ax-1cn 7900 ax-1re 7901 ax-icn 7902 ax-addcl 7903 ax-addrcl 7904 ax-mulcl 7905 ax-mulrcl 7906 ax-addcom 7907 ax-mulcom 7908 ax-addass 7909 ax-mulass 7910 ax-distr 7911 ax-i2m1 7912 ax-0lt1 7913 ax-1rid 7914 ax-0id 7915 ax-rnegex 7916 ax-precex 7917 ax-cnre 7918 ax-pre-ltirr 7919 ax-pre-ltwlin 7920 ax-pre-lttrn 7921 ax-pre-apti 7922 ax-pre-ltadd 7923 ax-pre-mulgt0 7924 ax-pre-mulext 7925 ax-arch 7926 ax-caucvg 7927 |
This theorem depends on definitions: df-bi 117 df-stab 831 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2739 df-sbc 2963 df-csb 3058 df-dif 3131 df-un 3133 df-in 3135 df-ss 3142 df-nul 3423 df-if 3535 df-pw 3577 df-sn 3598 df-pr 3599 df-op 3601 df-uni 3810 df-int 3845 df-iun 3888 df-br 4003 df-opab 4064 df-mpt 4065 df-tr 4101 df-id 4292 df-po 4295 df-iso 4296 df-iord 4365 df-on 4367 df-ilim 4368 df-suc 4370 df-iom 4589 df-xp 4631 df-rel 4632 df-cnv 4633 df-co 4634 df-dm 4635 df-rn 4636 df-res 4637 df-ima 4638 df-iota 5176 df-fun 5216 df-fn 5217 df-f 5218 df-f1 5219 df-fo 5220 df-f1o 5221 df-fv 5222 df-riota 5827 df-ov 5874 df-oprab 5875 df-mpo 5876 df-1st 6137 df-2nd 6138 df-recs 6302 df-frec 6388 df-sup 6979 df-pnf 7989 df-mnf 7990 df-xr 7991 df-ltxr 7992 df-le 7993 df-sub 8125 df-neg 8126 df-reap 8527 df-ap 8534 df-div 8625 df-inn 8915 df-2 8973 df-3 8974 df-4 8975 df-n0 9172 df-z 9249 df-uz 9524 df-q 9615 df-rp 9649 df-fz 10004 df-fzo 10137 df-fl 10264 df-mod 10317 df-seqfrec 10440 df-exp 10514 df-cj 10843 df-re 10844 df-im 10845 df-rsqrt 10999 df-abs 11000 df-dvds 11787 df-gcd 11935 |
This theorem is referenced by: 2sqlem8a 14320 |
Copyright terms: Public domain | W3C validator |