Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibr | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibr | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | syl5ib 153 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 687 limelon 4376 eldifpw 4454 ssonuni 4464 onsucuni2 4540 peano2 4571 limom 4590 elrnmpt1 4854 cnveqb 5058 cnveq0 5059 relcoi1 5134 ndmfvg 5516 ffvresb 5647 caovord3d 6008 poxp 6196 nnm0r 6443 nnacl 6444 nnacom 6448 nnaass 6449 nndi 6450 nnmass 6451 nnmsucr 6452 nnmcom 6453 brecop 6587 ecopovtrn 6594 ecopovtrng 6597 elpm2r 6628 map0g 6650 fundmen 6768 mapxpen 6810 phpm 6827 f1vrnfibi 6906 elfir 6934 mulcmpblnq 7305 ordpipqqs 7311 mulcmpblnq0 7381 genpprecll 7451 genppreclu 7452 addcmpblnr 7676 ax1rid 7814 axpre-mulgt0 7824 cnegexlem1 8069 msqge0 8510 mulge0 8513 ltleap 8526 nnmulcl 8874 nnsub 8892 elnn0z 9200 ztri3or0 9229 nneoor 9289 uz11 9484 xltnegi 9767 frec2uzuzd 10333 seq3fveq2 10400 seq3shft2 10404 seq3split 10410 seq3caopr3 10412 seq3id2 10440 seq3homo 10441 m1expcl2 10473 expadd 10493 expmul 10496 faclbnd 10650 hashfzp1 10733 hashfacen 10745 seq3coll 10751 caucvgrelemcau 10918 recan 11047 rexanre 11158 fsumiun 11414 efexp 11619 dvdstr 11764 alzdvds 11788 zob 11824 gcdmultiplez 11950 dvdssq 11960 cncongr2 12032 prmdiveq 12164 pythagtriplem2 12194 pcexp 12237 elrestr 12559 restopn2 12783 txcn 12875 txlm 12879 isxms2 13052 bj-om 13779 bj-inf2vnlem2 13813 bj-inf2vn 13816 bj-inf2vn2 13817 |
Copyright terms: Public domain | W3C validator |