![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibr | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibr | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | syl5ib 153 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 651 limelon 4250 eldifpw 4327 ssonuni 4333 onsucuni2 4408 peano2 4438 limom 4456 elrnmpt1 4718 cnveqb 4920 cnveq0 4921 relcoi1 4996 ndmfvg 5370 ffvresb 5500 caovord3d 5853 poxp 6035 nnm0r 6280 nnacl 6281 nnacom 6285 nnaass 6286 nndi 6287 nnmass 6288 nnmsucr 6289 nnmcom 6290 brecop 6422 ecopovtrn 6429 ecopovtrng 6432 elpm2r 6463 map0g 6485 fundmen 6603 mapxpen 6644 phpm 6661 f1vrnfibi 6734 mulcmpblnq 7024 ordpipqqs 7030 mulcmpblnq0 7100 genpprecll 7170 genppreclu 7171 addcmpblnr 7382 ax1rid 7509 axpre-mulgt0 7519 cnegexlem1 7754 msqge0 8190 mulge0 8193 ltleap 8204 nnmulcl 8541 nnsub 8559 elnn0z 8861 ztri3or0 8890 nneoor 8947 uz11 9140 xltnegi 9401 frec2uzuzd 9958 iseqsst 10031 seq3fveq2 10034 seq3shft2 10038 seq3split 10045 seq3caopr3 10047 seq3id2 10075 seq3homo 10076 m1expcl2 10108 expadd 10128 expmul 10131 faclbnd 10280 hashfzp1 10363 hashfacen 10372 seq3coll 10378 caucvgrelemcau 10544 recan 10673 rexanre 10784 fsumiun 11035 efexp 11136 dvdstr 11275 alzdvds 11297 zob 11333 gcdmultiplez 11452 dvdssq 11462 cncongr2 11528 elrestr 11827 restopn2 12050 isxms2 12253 bj-om 12544 bj-inf2vnlem2 12578 bj-inf2vn 12581 bj-inf2vn2 12582 |
Copyright terms: Public domain | W3C validator |