Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > syl5ibr | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (𝜑 → 𝜃) |
syl5ibr.2 | ⊢ (𝜒 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
syl5ibr | ⊢ (𝜒 → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 ⊢ (𝜑 → 𝜃) | |
2 | syl5ibr.2 | . . 3 ⊢ (𝜒 → (𝜓 ↔ 𝜃)) | |
3 | 2 | bicomd 140 | . 2 ⊢ (𝜒 → (𝜃 ↔ 𝜓)) |
4 | 1, 3 | syl5ib 153 | 1 ⊢ (𝜒 → (𝜑 → 𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: syl5ibrcom 156 biimprd 157 nbn2 687 limelon 4374 eldifpw 4452 ssonuni 4462 onsucuni2 4538 peano2 4569 limom 4588 elrnmpt1 4852 cnveqb 5056 cnveq0 5057 relcoi1 5132 ndmfvg 5514 ffvresb 5645 caovord3d 6006 poxp 6194 nnm0r 6441 nnacl 6442 nnacom 6446 nnaass 6447 nndi 6448 nnmass 6449 nnmsucr 6450 nnmcom 6451 brecop 6585 ecopovtrn 6592 ecopovtrng 6595 elpm2r 6626 map0g 6648 fundmen 6766 mapxpen 6808 phpm 6825 f1vrnfibi 6904 elfir 6932 mulcmpblnq 7303 ordpipqqs 7309 mulcmpblnq0 7379 genpprecll 7449 genppreclu 7450 addcmpblnr 7674 ax1rid 7812 axpre-mulgt0 7822 cnegexlem1 8067 msqge0 8508 mulge0 8511 ltleap 8524 nnmulcl 8872 nnsub 8890 elnn0z 9198 ztri3or0 9227 nneoor 9287 uz11 9482 xltnegi 9765 frec2uzuzd 10331 seq3fveq2 10398 seq3shft2 10402 seq3split 10408 seq3caopr3 10410 seq3id2 10438 seq3homo 10439 m1expcl2 10471 expadd 10491 expmul 10494 faclbnd 10648 hashfzp1 10731 hashfacen 10743 seq3coll 10749 caucvgrelemcau 10916 recan 11045 rexanre 11156 fsumiun 11412 efexp 11617 dvdstr 11762 alzdvds 11786 zob 11822 gcdmultiplez 11948 dvdssq 11958 cncongr2 12030 prmdiveq 12162 pythagtriplem2 12192 pcexp 12235 elrestr 12557 restopn2 12781 txcn 12873 txlm 12877 isxms2 13050 bj-om 13712 bj-inf2vnlem2 13746 bj-inf2vn 13749 bj-inf2vn2 13750 |
Copyright terms: Public domain | W3C validator |