![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0ghm | Structured version Visualization version GIF version |
Description: The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
0ghm.z | ⊢ 0 = (0g‘𝑁) |
0ghm.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
0ghm | ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpmnd 18862 | . . 3 ⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) | |
2 | grpmnd 18862 | . . 3 ⊢ (𝑁 ∈ Grp → 𝑁 ∈ Mnd) | |
3 | 0ghm.z | . . . 4 ⊢ 0 = (0g‘𝑁) | |
4 | 0ghm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
5 | 3, 4 | 0mhm 18736 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |
6 | 1, 2, 5 | syl2an 595 | . 2 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁)) |
7 | ghmmhmb 19144 | . 2 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝑀 GrpHom 𝑁) = (𝑀 MndHom 𝑁)) | |
8 | 6, 7 | eleqtrrd 2828 | 1 ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {csn 4621 × cxp 5665 ‘cfv 6534 (class class class)co 7402 Basecbs 17145 0gc0g 17386 Mndcmnd 18659 MndHom cmhm 18703 Grpcgrp 18855 GrpHom cghm 19130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-map 8819 df-0g 17388 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mhm 18705 df-grp 18858 df-ghm 19131 |
This theorem is referenced by: 0frgp 19691 0lmhm 20880 nmo0 24576 0nghm 24582 |
Copyright terms: Public domain | W3C validator |