![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmo0 | Structured version Visualization version GIF version |
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nmo0.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmo0.2 | ⊢ 𝑉 = (Base‘𝑆) |
nmo0.3 | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
nmo0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmo0.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
2 | nmo0.2 | . . 3 ⊢ 𝑉 = (Base‘𝑆) | |
3 | eqid 2778 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
4 | eqid 2778 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
5 | eqid 2778 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
6 | simpl 476 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp) | |
7 | simpr 479 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp) | |
8 | ngpgrp 22815 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
9 | ngpgrp 22815 | . . . 4 ⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) | |
10 | nmo0.3 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
11 | 10, 2 | 0ghm 18062 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
12 | 8, 9, 11 | syl2an 589 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
13 | 0red 10382 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ) | |
14 | 0le0 11487 | . . . 4 ⊢ 0 ≤ 0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0) |
16 | 10 | fvexi 6462 | . . . . . . . 8 ⊢ 0 ∈ V |
17 | 16 | fvconst2 6743 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
18 | 17 | ad2antrl 718 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
19 | 18 | fveq2d 6452 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 )) |
20 | 4, 10 | nm0 22845 | . . . . . 6 ⊢ (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0) |
21 | 20 | ad2antlr 717 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘ 0 ) = 0) |
22 | 19, 21 | eqtrd 2814 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0) |
23 | 2, 3 | nmcl 22832 | . . . . . . . 8 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
24 | 23 | ad2ant2r 737 | . . . . . . 7 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
25 | 24 | recnd 10407 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
26 | 25 | mul02d 10576 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
27 | 14, 26 | syl5breqr 4926 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥))) |
28 | 22, 27 | eqbrtrd 4910 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥))) |
29 | 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28 | nmolb2d 22934 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0) |
30 | 1 | nmoge0 22937 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
31 | 12, 30 | mpd3an3 1535 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
32 | 1 | nmocl 22936 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
33 | 12, 32 | mpd3an3 1535 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
34 | 0xr 10425 | . . 3 ⊢ 0 ∈ ℝ* | |
35 | xrletri3 12301 | . . 3 ⊢ (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) | |
36 | 33, 34, 35 | sylancl 580 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) |
37 | 29, 31, 36 | mpbir2and 703 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ≠ wne 2969 {csn 4398 class class class wbr 4888 × cxp 5355 ‘cfv 6137 (class class class)co 6924 ℝcr 10273 0cc0 10274 · cmul 10279 ℝ*cxr 10412 ≤ cle 10414 Basecbs 16259 0gc0g 16490 Grpcgrp 17813 GrpHom cghm 18045 normcnm 22793 NrmGrpcngp 22794 normOp cnmo 22921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-inf 8639 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11035 df-nn 11379 df-2 11442 df-n0 11647 df-z 11733 df-uz 11997 df-q 12100 df-rp 12142 df-xneg 12261 df-xadd 12262 df-xmul 12263 df-ico 12497 df-0g 16492 df-topgen 16494 df-mgm 17632 df-sgrp 17674 df-mnd 17685 df-mhm 17725 df-grp 17816 df-ghm 18046 df-psmet 20138 df-xmet 20139 df-met 20140 df-bl 20141 df-mopn 20142 df-top 21110 df-topon 21127 df-topsp 21149 df-bases 21162 df-xms 22537 df-ms 22538 df-nm 22799 df-ngp 22800 df-nmo 22924 |
This theorem is referenced by: nmoeq0 22952 0nghm 22957 idnghm 22959 |
Copyright terms: Public domain | W3C validator |