![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nmo0 | Structured version Visualization version GIF version |
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
Ref | Expression |
---|---|
nmo0.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
nmo0.2 | ⊢ 𝑉 = (Base‘𝑆) |
nmo0.3 | ⊢ 0 = (0g‘𝑇) |
Ref | Expression |
---|---|
nmo0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nmo0.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
2 | nmo0.2 | . . 3 ⊢ 𝑉 = (Base‘𝑆) | |
3 | eqid 2734 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
4 | eqid 2734 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
5 | eqid 2734 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
6 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp) | |
7 | simpr 484 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp) | |
8 | ngpgrp 24627 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
9 | ngpgrp 24627 | . . . 4 ⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) | |
10 | nmo0.3 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
11 | 10, 2 | 0ghm 19260 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
12 | 8, 9, 11 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
13 | 0red 11261 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ) | |
14 | 0le0 12364 | . . . 4 ⊢ 0 ≤ 0 | |
15 | 14 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0) |
16 | 10 | fvexi 6920 | . . . . . . . 8 ⊢ 0 ∈ V |
17 | 16 | fvconst2 7223 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
18 | 17 | ad2antrl 728 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
19 | 18 | fveq2d 6910 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 )) |
20 | 4, 10 | nm0 24657 | . . . . . 6 ⊢ (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0) |
21 | 20 | ad2antlr 727 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘ 0 ) = 0) |
22 | 19, 21 | eqtrd 2774 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0) |
23 | 2, 3 | nmcl 24644 | . . . . . . . 8 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
24 | 23 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
25 | 24 | recnd 11286 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
26 | 25 | mul02d 11456 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
27 | 14, 26 | breqtrrid 5185 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥))) |
28 | 22, 27 | eqbrtrd 5169 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥))) |
29 | 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28 | nmolb2d 24754 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0) |
30 | 1 | nmoge0 24757 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
31 | 12, 30 | mpd3an3 1461 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
32 | 1 | nmocl 24756 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
33 | 12, 32 | mpd3an3 1461 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
34 | 0xr 11305 | . . 3 ⊢ 0 ∈ ℝ* | |
35 | xrletri3 13192 | . . 3 ⊢ (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) | |
36 | 33, 34, 35 | sylancl 586 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) |
37 | 29, 31, 36 | mpbir2and 713 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 {csn 4630 class class class wbr 5147 × cxp 5686 ‘cfv 6562 (class class class)co 7430 ℝcr 11151 0cc0 11152 · cmul 11157 ℝ*cxr 11291 ≤ cle 11293 Basecbs 17244 0gc0g 17485 Grpcgrp 18963 GrpHom cghm 19242 normcnm 24604 NrmGrpcngp 24605 normOp cnmo 24741 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-sup 9479 df-inf 9480 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ico 13389 df-0g 17487 df-topgen 17489 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-grp 18966 df-ghm 19243 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-xms 24345 df-ms 24346 df-nm 24610 df-ngp 24611 df-nmo 24744 |
This theorem is referenced by: nmoeq0 24772 0nghm 24777 idnghm 24779 |
Copyright terms: Public domain | W3C validator |