MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Structured version   Visualization version   GIF version

Theorem nmo0 23344
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmo0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)

Proof of Theorem nmo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmo0.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 nmo0.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2801 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2801 . . 3 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2801 . . 3 (0g𝑆) = (0g𝑆)
6 simpl 486 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp)
7 simpr 488 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp)
8 ngpgrp 23208 . . . 4 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
9 ngpgrp 23208 . . . 4 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
10 nmo0.3 . . . . 5 0 = (0g𝑇)
1110, 20ghm 18367 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
128, 9, 11syl2an 598 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
13 0red 10637 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ)
14 0le0 11730 . . . 4 0 ≤ 0
1514a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0)
1610fvexi 6663 . . . . . . . 8 0 ∈ V
1716fvconst2 6947 . . . . . . 7 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
1817ad2antrl 727 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 )
1918fveq2d 6653 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 ))
204, 10nm0 23238 . . . . . 6 (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0)
2120ad2antlr 726 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘ 0 ) = 0)
2219, 21eqtrd 2836 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0)
232, 3nmcl 23225 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2423ad2ant2r 746 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2524recnd 10662 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2625mul02d 10831 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2714, 26breqtrrid 5071 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥)))
2822, 27eqbrtrd 5055 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥)))
291, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28nmolb2d 23327 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0)
301nmoge0 23330 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
3112, 30mpd3an3 1459 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
321nmocl 23329 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
3312, 32mpd3an3 1459 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
34 0xr 10681 . . 3 0 ∈ ℝ*
35 xrletri3 12539 . . 3 (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3633, 34, 35sylancl 589 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3729, 31, 36mpbir2and 712 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2112  wne 2990  {csn 4528   class class class wbr 5033   × cxp 5521  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530   · cmul 10535  *cxr 10667  cle 10669  Basecbs 16478  0gc0g 16708  Grpcgrp 18098   GrpHom cghm 18350  normcnm 23186  NrmGrpcngp 23187   normOp cnmo 23314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ico 12736  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-mhm 17951  df-grp 18101  df-ghm 18351  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nmo 23317
This theorem is referenced by:  nmoeq0  23345  0nghm  23350  idnghm  23352
  Copyright terms: Public domain W3C validator