MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Structured version   Visualization version   GIF version

Theorem nmo0 23880
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmo0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)

Proof of Theorem nmo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmo0.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 nmo0.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2739 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2739 . . 3 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2739 . . 3 (0g𝑆) = (0g𝑆)
6 simpl 482 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp)
7 simpr 484 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp)
8 ngpgrp 23736 . . . 4 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
9 ngpgrp 23736 . . . 4 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
10 nmo0.3 . . . . 5 0 = (0g𝑇)
1110, 20ghm 18829 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
128, 9, 11syl2an 595 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
13 0red 10962 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ)
14 0le0 12057 . . . 4 0 ≤ 0
1514a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0)
1610fvexi 6782 . . . . . . . 8 0 ∈ V
1716fvconst2 7073 . . . . . . 7 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
1817ad2antrl 724 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 )
1918fveq2d 6772 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 ))
204, 10nm0 23766 . . . . . 6 (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0)
2120ad2antlr 723 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘ 0 ) = 0)
2219, 21eqtrd 2779 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0)
232, 3nmcl 23753 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2423ad2ant2r 743 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2524recnd 10987 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2625mul02d 11156 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2714, 26breqtrrid 5116 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥)))
2822, 27eqbrtrd 5100 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥)))
291, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28nmolb2d 23863 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0)
301nmoge0 23866 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
3112, 30mpd3an3 1460 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
321nmocl 23865 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
3312, 32mpd3an3 1460 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
34 0xr 11006 . . 3 0 ∈ ℝ*
35 xrletri3 12870 . . 3 (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3633, 34, 35sylancl 585 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3729, 31, 36mpbir2and 709 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wne 2944  {csn 4566   class class class wbr 5078   × cxp 5586  cfv 6430  (class class class)co 7268  cr 10854  0cc0 10855   · cmul 10860  *cxr 10992  cle 10994  Basecbs 16893  0gc0g 17131  Grpcgrp 18558   GrpHom cghm 18812  normcnm 23713  NrmGrpcngp 23714   normOp cnmo 23850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-er 8472  df-map 8591  df-en 8708  df-dom 8709  df-sdom 8710  df-sup 9162  df-inf 9163  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-n0 12217  df-z 12303  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-ico 13067  df-0g 17133  df-topgen 17135  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-mhm 18411  df-grp 18561  df-ghm 18813  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-xms 23454  df-ms 23455  df-nm 23719  df-ngp 23720  df-nmo 23853
This theorem is referenced by:  nmoeq0  23881  0nghm  23886  idnghm  23888
  Copyright terms: Public domain W3C validator