MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nmo0 Structured version   Visualization version   GIF version

Theorem nmo0 24623
Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.)
Hypotheses
Ref Expression
nmo0.1 𝑁 = (𝑆 normOp 𝑇)
nmo0.2 𝑉 = (Base‘𝑆)
nmo0.3 0 = (0g𝑇)
Assertion
Ref Expression
nmo0 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)

Proof of Theorem nmo0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmo0.1 . . 3 𝑁 = (𝑆 normOp 𝑇)
2 nmo0.2 . . 3 𝑉 = (Base‘𝑆)
3 eqid 2729 . . 3 (norm‘𝑆) = (norm‘𝑆)
4 eqid 2729 . . 3 (norm‘𝑇) = (norm‘𝑇)
5 eqid 2729 . . 3 (0g𝑆) = (0g𝑆)
6 simpl 482 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp)
7 simpr 484 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp)
8 ngpgrp 24487 . . . 4 (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp)
9 ngpgrp 24487 . . . 4 (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp)
10 nmo0.3 . . . . 5 0 = (0g𝑇)
1110, 20ghm 19162 . . . 4 ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
128, 9, 11syl2an 596 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇))
13 0red 11177 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ)
14 0le0 12287 . . . 4 0 ≤ 0
1514a1i 11 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0)
1610fvexi 6872 . . . . . . . 8 0 ∈ V
1716fvconst2 7178 . . . . . . 7 (𝑥𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 )
1817ad2antrl 728 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 )
1918fveq2d 6862 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 ))
204, 10nm0 24517 . . . . . 6 (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0)
2120ad2antlr 727 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘ 0 ) = 0)
2219, 21eqtrd 2764 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0)
232, 3nmcl 24504 . . . . . . . 8 ((𝑆 ∈ NrmGrp ∧ 𝑥𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2423ad2ant2r 747 . . . . . . 7 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ)
2524recnd 11202 . . . . . 6 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ)
2625mul02d 11372 . . . . 5 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0)
2714, 26breqtrrid 5145 . . . 4 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥)))
2822, 27eqbrtrd 5129 . . 3 (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥𝑉𝑥 ≠ (0g𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥)))
291, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28nmolb2d 24606 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0)
301nmoge0 24609 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
3112, 30mpd3an3 1464 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 })))
321nmocl 24608 . . . 4 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
3312, 32mpd3an3 1464 . . 3 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*)
34 0xr 11221 . . 3 0 ∈ ℝ*
35 xrletri3 13114 . . 3 (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3633, 34, 35sylancl 586 . 2 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 })))))
3729, 31, 36mpbir2and 713 1 ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {csn 4589   class class class wbr 5107   × cxp 5636  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068   · cmul 11073  *cxr 11207  cle 11209  Basecbs 17179  0gc0g 17402  Grpcgrp 18865   GrpHom cghm 19144  normcnm 24464  NrmGrpcngp 24465   normOp cnmo 24593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ico 13312  df-0g 17404  df-topgen 17406  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-grp 18868  df-ghm 19145  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-xms 24208  df-ms 24209  df-nm 24470  df-ngp 24471  df-nmo 24596
This theorem is referenced by:  nmoeq0  24624  0nghm  24629  idnghm  24631
  Copyright terms: Public domain W3C validator