| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmo0 | Structured version Visualization version GIF version | ||
| Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmo0.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmo0.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmo0.3 | ⊢ 0 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| nmo0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmo0.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | nmo0.2 | . . 3 ⊢ 𝑉 = (Base‘𝑆) | |
| 3 | eqid 2729 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 4 | eqid 2729 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 5 | eqid 2729 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp) | |
| 7 | simpr 484 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp) | |
| 8 | ngpgrp 24487 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
| 9 | ngpgrp 24487 | . . . 4 ⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) | |
| 10 | nmo0.3 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 11 | 10, 2 | 0ghm 19162 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
| 12 | 8, 9, 11 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
| 13 | 0red 11177 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ) | |
| 14 | 0le0 12287 | . . . 4 ⊢ 0 ≤ 0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0) |
| 16 | 10 | fvexi 6872 | . . . . . . . 8 ⊢ 0 ∈ V |
| 17 | 16 | fvconst2 7178 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 18 | 17 | ad2antrl 728 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 19 | 18 | fveq2d 6862 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 )) |
| 20 | 4, 10 | nm0 24517 | . . . . . 6 ⊢ (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0) |
| 21 | 20 | ad2antlr 727 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘ 0 ) = 0) |
| 22 | 19, 21 | eqtrd 2764 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0) |
| 23 | 2, 3 | nmcl 24504 | . . . . . . . 8 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 24 | 23 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 25 | 24 | recnd 11202 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
| 26 | 25 | mul02d 11372 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
| 27 | 14, 26 | breqtrrid 5145 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥))) |
| 28 | 22, 27 | eqbrtrd 5129 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥))) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28 | nmolb2d 24606 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0) |
| 30 | 1 | nmoge0 24609 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
| 31 | 12, 30 | mpd3an3 1464 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
| 32 | 1 | nmocl 24608 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
| 33 | 12, 32 | mpd3an3 1464 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
| 34 | 0xr 11221 | . . 3 ⊢ 0 ∈ ℝ* | |
| 35 | xrletri3 13114 | . . 3 ⊢ (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) | |
| 36 | 33, 34, 35 | sylancl 586 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) |
| 37 | 29, 31, 36 | mpbir2and 713 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 · cmul 11073 ℝ*cxr 11207 ≤ cle 11209 Basecbs 17179 0gc0g 17402 Grpcgrp 18865 GrpHom cghm 19144 normcnm 24464 NrmGrpcngp 24465 normOp cnmo 24593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-ico 13312 df-0g 17404 df-topgen 17406 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-grp 18868 df-ghm 19145 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 df-nm 24470 df-ngp 24471 df-nmo 24596 |
| This theorem is referenced by: nmoeq0 24624 0nghm 24629 idnghm 24631 |
| Copyright terms: Public domain | W3C validator |