| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmo0 | Structured version Visualization version GIF version | ||
| Description: The operator norm of the zero operator. (Contributed by Mario Carneiro, 20-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmo0.1 | ⊢ 𝑁 = (𝑆 normOp 𝑇) |
| nmo0.2 | ⊢ 𝑉 = (Base‘𝑆) |
| nmo0.3 | ⊢ 0 = (0g‘𝑇) |
| Ref | Expression |
|---|---|
| nmo0 | ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmo0.1 | . . 3 ⊢ 𝑁 = (𝑆 normOp 𝑇) | |
| 2 | nmo0.2 | . . 3 ⊢ 𝑉 = (Base‘𝑆) | |
| 3 | eqid 2731 | . . 3 ⊢ (norm‘𝑆) = (norm‘𝑆) | |
| 4 | eqid 2731 | . . 3 ⊢ (norm‘𝑇) = (norm‘𝑇) | |
| 5 | eqid 2731 | . . 3 ⊢ (0g‘𝑆) = (0g‘𝑆) | |
| 6 | simpl 482 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑆 ∈ NrmGrp) | |
| 7 | simpr 484 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 𝑇 ∈ NrmGrp) | |
| 8 | ngpgrp 24512 | . . . 4 ⊢ (𝑆 ∈ NrmGrp → 𝑆 ∈ Grp) | |
| 9 | ngpgrp 24512 | . . . 4 ⊢ (𝑇 ∈ NrmGrp → 𝑇 ∈ Grp) | |
| 10 | nmo0.3 | . . . . 5 ⊢ 0 = (0g‘𝑇) | |
| 11 | 10, 2 | 0ghm 19140 | . . . 4 ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
| 12 | 8, 9, 11 | syl2an 596 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) |
| 13 | 0red 11112 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ∈ ℝ) | |
| 14 | 0le0 12223 | . . . 4 ⊢ 0 ≤ 0 | |
| 15 | 14 | a1i 11 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ 0) |
| 16 | 10 | fvexi 6836 | . . . . . . . 8 ⊢ 0 ∈ V |
| 17 | 16 | fvconst2 7138 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑉 → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 18 | 17 | ad2antrl 728 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((𝑉 × { 0 })‘𝑥) = 0 ) |
| 19 | 18 | fveq2d 6826 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = ((norm‘𝑇)‘ 0 )) |
| 20 | 4, 10 | nm0 24542 | . . . . . 6 ⊢ (𝑇 ∈ NrmGrp → ((norm‘𝑇)‘ 0 ) = 0) |
| 21 | 20 | ad2antlr 727 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘ 0 ) = 0) |
| 22 | 19, 21 | eqtrd 2766 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) = 0) |
| 23 | 2, 3 | nmcl 24529 | . . . . . . . 8 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 24 | 23 | ad2ant2r 747 | . . . . . . 7 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℝ) |
| 25 | 24 | recnd 11137 | . . . . . 6 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑆)‘𝑥) ∈ ℂ) |
| 26 | 25 | mul02d 11308 | . . . . 5 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → (0 · ((norm‘𝑆)‘𝑥)) = 0) |
| 27 | 14, 26 | breqtrrid 5129 | . . . 4 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → 0 ≤ (0 · ((norm‘𝑆)‘𝑥))) |
| 28 | 22, 27 | eqbrtrd 5113 | . . 3 ⊢ (((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) ∧ (𝑥 ∈ 𝑉 ∧ 𝑥 ≠ (0g‘𝑆))) → ((norm‘𝑇)‘((𝑉 × { 0 })‘𝑥)) ≤ (0 · ((norm‘𝑆)‘𝑥))) |
| 29 | 1, 2, 3, 4, 5, 6, 7, 12, 13, 15, 28 | nmolb2d 24631 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ≤ 0) |
| 30 | 1 | nmoge0 24634 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
| 31 | 12, 30 | mpd3an3 1464 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → 0 ≤ (𝑁‘(𝑉 × { 0 }))) |
| 32 | 1 | nmocl 24633 | . . . 4 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ (𝑉 × { 0 }) ∈ (𝑆 GrpHom 𝑇)) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
| 33 | 12, 32 | mpd3an3 1464 | . . 3 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) ∈ ℝ*) |
| 34 | 0xr 11156 | . . 3 ⊢ 0 ∈ ℝ* | |
| 35 | xrletri3 13050 | . . 3 ⊢ (((𝑁‘(𝑉 × { 0 })) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) | |
| 36 | 33, 34, 35 | sylancl 586 | . 2 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → ((𝑁‘(𝑉 × { 0 })) = 0 ↔ ((𝑁‘(𝑉 × { 0 })) ≤ 0 ∧ 0 ≤ (𝑁‘(𝑉 × { 0 }))))) |
| 37 | 29, 31, 36 | mpbir2and 713 | 1 ⊢ ((𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp) → (𝑁‘(𝑉 × { 0 })) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {csn 4576 class class class wbr 5091 × cxp 5614 ‘cfv 6481 (class class class)co 7346 ℝcr 11002 0cc0 11003 · cmul 11008 ℝ*cxr 11142 ≤ cle 11144 Basecbs 17117 0gc0g 17340 Grpcgrp 18843 GrpHom cghm 19122 normcnm 24489 NrmGrpcngp 24490 normOp cnmo 24618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-nn 12123 df-2 12185 df-n0 12379 df-z 12466 df-uz 12730 df-q 12844 df-rp 12888 df-xneg 13008 df-xadd 13009 df-xmul 13010 df-ico 13248 df-0g 17342 df-topgen 17344 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-mhm 18688 df-grp 18846 df-ghm 19123 df-psmet 21281 df-xmet 21282 df-met 21283 df-bl 21284 df-mopn 21285 df-top 22807 df-topon 22824 df-topsp 22846 df-bases 22859 df-xms 24233 df-ms 24234 df-nm 24495 df-ngp 24496 df-nmo 24621 |
| This theorem is referenced by: nmoeq0 24649 0nghm 24654 idnghm 24656 |
| Copyright terms: Public domain | W3C validator |