MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Structured version   Visualization version   GIF version

Theorem ghmrn 19247
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))

Proof of Theorem ghmrn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2737 . . . 4 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 19238 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43frnd 6744 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
53fdmd 6746 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆))
6 ghmgrp1 19236 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
71grpbn0 18984 . . . . 5 (𝑆 ∈ Grp → (Base‘𝑆) ≠ ∅)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (Base‘𝑆) ≠ ∅)
95, 8eqnetrd 3008 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 ≠ ∅)
10 dm0rn0 5935 . . . 4 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1110necon3bii 2993 . . 3 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
129, 11sylib 218 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ≠ ∅)
13 eqid 2737 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2737 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
151, 13, 14ghmlin 19239 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
163ffnd 6737 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆))
17163ad2ant1 1134 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
181, 13grpcl 18959 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
196, 18syl3an1 1164 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
20 fnfvelrn 7100 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2117, 19, 20syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2215, 21eqeltrrd 2842 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
23223expia 1122 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2423ralrimiv 3145 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
25 oveq2 7439 . . . . . . . . . 10 (𝑏 = (𝐹𝑎) → ((𝐹𝑐)(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
2625eleq1d 2826 . . . . . . . . 9 (𝑏 = (𝐹𝑎) → (((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2726ralrn 7108 . . . . . . . 8 (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2816, 27syl 17 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2928adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3024, 29mpbird 257 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹)
31 eqid 2737 . . . . . . 7 (invg𝑆) = (invg𝑆)
32 eqid 2737 . . . . . . 7 (invg𝑇) = (invg𝑇)
331, 31, 32ghminv 19241 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) = ((invg𝑇)‘(𝐹𝑐)))
3416adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
351, 31grpinvcl 19005 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
366, 35sylan 580 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
37 fnfvelrn 7100 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ ((invg𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3834, 36, 37syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3933, 38eqeltrrd 2842 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)
4030, 39jca 511 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4140ralrimiva 3146 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
42 oveq1 7438 . . . . . . . 8 (𝑎 = (𝐹𝑐) → (𝑎(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)𝑏))
4342eleq1d 2826 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
4443ralbidv 3178 . . . . . 6 (𝑎 = (𝐹𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
45 fveq2 6906 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((invg𝑇)‘𝑎) = ((invg𝑇)‘(𝐹𝑐)))
4645eleq1d 2826 . . . . . 6 (𝑎 = (𝐹𝑐) → (((invg𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4744, 46anbi12d 632 . . . . 5 (𝑎 = (𝐹𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4847ralrn 7108 . . . 4 (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4916, 48syl 17 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5041, 49mpbird 257 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))
51 ghmgrp2 19237 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
522, 14, 32issubg2 19159 . . 3 (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
5351, 52syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
544, 12, 50, 53mpbir3and 1343 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  c0 4333  dom cdm 5685  ran crn 5686   Fn wfn 6556  cfv 6561  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  Grpcgrp 18951  invgcminusg 18952  SubGrpcsubg 19138   GrpHom cghm 19230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-subg 19141  df-ghm 19231
This theorem is referenced by:  ghmghmrn  19253  ghmima  19255  ghmqusnsg  19300  ghmquskerlem3  19304  cayley  19432
  Copyright terms: Public domain W3C validator