MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Structured version   Visualization version   GIF version

Theorem ghmrn 18762
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))

Proof of Theorem ghmrn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2738 . . . 4 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 18753 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43frnd 6592 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
53fdmd 6595 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆))
6 ghmgrp1 18751 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
71grpbn0 18523 . . . . 5 (𝑆 ∈ Grp → (Base‘𝑆) ≠ ∅)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (Base‘𝑆) ≠ ∅)
95, 8eqnetrd 3010 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 ≠ ∅)
10 dm0rn0 5823 . . . 4 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1110necon3bii 2995 . . 3 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
129, 11sylib 217 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ≠ ∅)
13 eqid 2738 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2738 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
151, 13, 14ghmlin 18754 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
163ffnd 6585 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆))
17163ad2ant1 1131 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
181, 13grpcl 18500 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
196, 18syl3an1 1161 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
20 fnfvelrn 6940 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2117, 19, 20syl2anc 583 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2215, 21eqeltrrd 2840 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
23223expia 1119 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2423ralrimiv 3106 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
25 oveq2 7263 . . . . . . . . . 10 (𝑏 = (𝐹𝑎) → ((𝐹𝑐)(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
2625eleq1d 2823 . . . . . . . . 9 (𝑏 = (𝐹𝑎) → (((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2726ralrn 6946 . . . . . . . 8 (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2816, 27syl 17 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2928adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3024, 29mpbird 256 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹)
31 eqid 2738 . . . . . . 7 (invg𝑆) = (invg𝑆)
32 eqid 2738 . . . . . . 7 (invg𝑇) = (invg𝑇)
331, 31, 32ghminv 18756 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) = ((invg𝑇)‘(𝐹𝑐)))
3416adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
351, 31grpinvcl 18542 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
366, 35sylan 579 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
37 fnfvelrn 6940 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ ((invg𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3834, 36, 37syl2anc 583 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3933, 38eqeltrrd 2840 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)
4030, 39jca 511 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4140ralrimiva 3107 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
42 oveq1 7262 . . . . . . . 8 (𝑎 = (𝐹𝑐) → (𝑎(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)𝑏))
4342eleq1d 2823 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
4443ralbidv 3120 . . . . . 6 (𝑎 = (𝐹𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
45 fveq2 6756 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((invg𝑇)‘𝑎) = ((invg𝑇)‘(𝐹𝑐)))
4645eleq1d 2823 . . . . . 6 (𝑎 = (𝐹𝑐) → (((invg𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4744, 46anbi12d 630 . . . . 5 (𝑎 = (𝐹𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4847ralrn 6946 . . . 4 (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4916, 48syl 17 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5041, 49mpbird 256 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))
51 ghmgrp2 18752 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
522, 14, 32issubg2 18685 . . 3 (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
5351, 52syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
544, 12, 50, 53mpbir3and 1340 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883  c0 4253  dom cdm 5580  ran crn 5581   Fn wfn 6413  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  invgcminusg 18493  SubGrpcsubg 18664   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-ghm 18747
This theorem is referenced by:  ghmghmrn  18768  ghmima  18770  cayley  18937
  Copyright terms: Public domain W3C validator