MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Structured version   Visualization version   GIF version

Theorem ghmrn 19161
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))

Proof of Theorem ghmrn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2729 . . . 4 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 19152 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43frnd 6696 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
53fdmd 6698 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆))
6 ghmgrp1 19150 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
71grpbn0 18898 . . . . 5 (𝑆 ∈ Grp → (Base‘𝑆) ≠ ∅)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (Base‘𝑆) ≠ ∅)
95, 8eqnetrd 2992 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 ≠ ∅)
10 dm0rn0 5888 . . . 4 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1110necon3bii 2977 . . 3 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
129, 11sylib 218 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ≠ ∅)
13 eqid 2729 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2729 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
151, 13, 14ghmlin 19153 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
163ffnd 6689 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆))
17163ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
181, 13grpcl 18873 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
196, 18syl3an1 1163 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
20 fnfvelrn 7052 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2117, 19, 20syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2215, 21eqeltrrd 2829 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
23223expia 1121 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2423ralrimiv 3124 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
25 oveq2 7395 . . . . . . . . . 10 (𝑏 = (𝐹𝑎) → ((𝐹𝑐)(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
2625eleq1d 2813 . . . . . . . . 9 (𝑏 = (𝐹𝑎) → (((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2726ralrn 7060 . . . . . . . 8 (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2816, 27syl 17 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2928adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3024, 29mpbird 257 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹)
31 eqid 2729 . . . . . . 7 (invg𝑆) = (invg𝑆)
32 eqid 2729 . . . . . . 7 (invg𝑇) = (invg𝑇)
331, 31, 32ghminv 19155 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) = ((invg𝑇)‘(𝐹𝑐)))
3416adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
351, 31grpinvcl 18919 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
366, 35sylan 580 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
37 fnfvelrn 7052 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ ((invg𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3834, 36, 37syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3933, 38eqeltrrd 2829 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)
4030, 39jca 511 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4140ralrimiva 3125 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
42 oveq1 7394 . . . . . . . 8 (𝑎 = (𝐹𝑐) → (𝑎(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)𝑏))
4342eleq1d 2813 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
4443ralbidv 3156 . . . . . 6 (𝑎 = (𝐹𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
45 fveq2 6858 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((invg𝑇)‘𝑎) = ((invg𝑇)‘(𝐹𝑐)))
4645eleq1d 2813 . . . . . 6 (𝑎 = (𝐹𝑐) → (((invg𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4744, 46anbi12d 632 . . . . 5 (𝑎 = (𝐹𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4847ralrn 7060 . . . 4 (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4916, 48syl 17 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5041, 49mpbird 257 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))
51 ghmgrp2 19151 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
522, 14, 32issubg2 19073 . . 3 (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
5351, 52syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
544, 12, 50, 53mpbir3and 1343 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  dom cdm 5638  ran crn 5639   Fn wfn 6506  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052   GrpHom cghm 19144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145
This theorem is referenced by:  ghmghmrn  19167  ghmima  19169  ghmqusnsg  19214  ghmquskerlem3  19218  cayley  19344
  Copyright terms: Public domain W3C validator