MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmrn Structured version   Visualization version   GIF version

Theorem ghmrn 19127
Description: The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmrn (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))

Proof of Theorem ghmrn
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2729 . . . 4 (Base‘𝑇) = (Base‘𝑇)
31, 2ghmf 19118 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:(Base‘𝑆)⟶(Base‘𝑇))
43frnd 6664 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ⊆ (Base‘𝑇))
53fdmd 6666 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 = (Base‘𝑆))
6 ghmgrp1 19116 . . . . 5 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
71grpbn0 18864 . . . . 5 (𝑆 ∈ Grp → (Base‘𝑆) ≠ ∅)
86, 7syl 17 . . . 4 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (Base‘𝑆) ≠ ∅)
95, 8eqnetrd 2992 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → dom 𝐹 ≠ ∅)
10 dm0rn0 5871 . . . 4 (dom 𝐹 = ∅ ↔ ran 𝐹 = ∅)
1110necon3bii 2977 . . 3 (dom 𝐹 ≠ ∅ ↔ ran 𝐹 ≠ ∅)
129, 11sylib 218 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ≠ ∅)
13 eqid 2729 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
14 eqid 2729 . . . . . . . . . 10 (+g𝑇) = (+g𝑇)
151, 13, 14ghmlin 19119 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
163ffnd 6657 . . . . . . . . . . 11 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 Fn (Base‘𝑆))
17163ad2ant1 1133 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
181, 13grpcl 18839 . . . . . . . . . . 11 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
196, 18syl3an1 1163 . . . . . . . . . 10 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆))
20 fnfvelrn 7018 . . . . . . . . . 10 ((𝐹 Fn (Base‘𝑆) ∧ (𝑐(+g𝑆)𝑎) ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2117, 19, 20syl2anc 584 . . . . . . . . 9 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → (𝐹‘(𝑐(+g𝑆)𝑎)) ∈ ran 𝐹)
2215, 21eqeltrrd 2829 . . . . . . . 8 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆) ∧ 𝑎 ∈ (Base‘𝑆)) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
23223expia 1121 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝑎 ∈ (Base‘𝑆) → ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2423ralrimiv 3120 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹)
25 oveq2 7361 . . . . . . . . . 10 (𝑏 = (𝐹𝑎) → ((𝐹𝑐)(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)(𝐹𝑎)))
2625eleq1d 2813 . . . . . . . . 9 (𝑏 = (𝐹𝑎) → (((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2726ralrn 7026 . . . . . . . 8 (𝐹 Fn (Base‘𝑆) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2816, 27syl 17 . . . . . . 7 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
2928adantr 480 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑎 ∈ (Base‘𝑆)((𝐹𝑐)(+g𝑇)(𝐹𝑎)) ∈ ran 𝐹))
3024, 29mpbird 257 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹)
31 eqid 2729 . . . . . . 7 (invg𝑆) = (invg𝑆)
32 eqid 2729 . . . . . . 7 (invg𝑇) = (invg𝑇)
331, 31, 32ghminv 19121 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) = ((invg𝑇)‘(𝐹𝑐)))
3416adantr 480 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → 𝐹 Fn (Base‘𝑆))
351, 31grpinvcl 18885 . . . . . . . 8 ((𝑆 ∈ Grp ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
366, 35sylan 580 . . . . . . 7 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑆)‘𝑐) ∈ (Base‘𝑆))
37 fnfvelrn 7018 . . . . . . 7 ((𝐹 Fn (Base‘𝑆) ∧ ((invg𝑆)‘𝑐) ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3834, 36, 37syl2anc 584 . . . . . 6 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (𝐹‘((invg𝑆)‘𝑐)) ∈ ran 𝐹)
3933, 38eqeltrrd 2829 . . . . 5 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)
4030, 39jca 511 . . . 4 ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑐 ∈ (Base‘𝑆)) → (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4140ralrimiva 3121 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
42 oveq1 7360 . . . . . . . 8 (𝑎 = (𝐹𝑐) → (𝑎(+g𝑇)𝑏) = ((𝐹𝑐)(+g𝑇)𝑏))
4342eleq1d 2813 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
4443ralbidv 3152 . . . . . 6 (𝑎 = (𝐹𝑐) → (∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ↔ ∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹))
45 fveq2 6826 . . . . . . 7 (𝑎 = (𝐹𝑐) → ((invg𝑇)‘𝑎) = ((invg𝑇)‘(𝐹𝑐)))
4645eleq1d 2813 . . . . . 6 (𝑎 = (𝐹𝑐) → (((invg𝑇)‘𝑎) ∈ ran 𝐹 ↔ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹))
4744, 46anbi12d 632 . . . . 5 (𝑎 = (𝐹𝑐) → ((∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ (∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4847ralrn 7026 . . . 4 (𝐹 Fn (Base‘𝑆) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
4916, 48syl 17 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹) ↔ ∀𝑐 ∈ (Base‘𝑆)(∀𝑏 ∈ ran 𝐹((𝐹𝑐)(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘(𝐹𝑐)) ∈ ran 𝐹)))
5041, 49mpbird 257 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))
51 ghmgrp2 19117 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑇 ∈ Grp)
522, 14, 32issubg2 19039 . . 3 (𝑇 ∈ Grp → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
5351, 52syl 17 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (ran 𝐹 ∈ (SubGrp‘𝑇) ↔ (ran 𝐹 ⊆ (Base‘𝑇) ∧ ran 𝐹 ≠ ∅ ∧ ∀𝑎 ∈ ran 𝐹(∀𝑏 ∈ ran 𝐹(𝑎(+g𝑇)𝑏) ∈ ran 𝐹 ∧ ((invg𝑇)‘𝑎) ∈ ran 𝐹))))
544, 12, 50, 53mpbir3and 1343 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  c0 4286  dom cdm 5623  ran crn 5624   Fn wfn 6481  cfv 6486  (class class class)co 7353  Basecbs 17139  +gcplusg 17180  Grpcgrp 18831  invgcminusg 18832  SubGrpcsubg 19018   GrpHom cghm 19110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-nn 12148  df-2 12210  df-sets 17094  df-slot 17112  df-ndx 17124  df-base 17140  df-ress 17161  df-plusg 17193  df-0g 17364  df-mgm 18533  df-sgrp 18612  df-mnd 18628  df-grp 18834  df-minusg 18835  df-subg 19021  df-ghm 19111
This theorem is referenced by:  ghmghmrn  19133  ghmima  19135  ghmqusnsg  19180  ghmquskerlem3  19184  cayley  19312
  Copyright terms: Public domain W3C validator