Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1dimN | Structured version Visualization version GIF version |
Description: An atom is covered by a height-2 element (1-dimensional line). (Contributed by NM, 3-May-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2dim.j | ⊢ ∨ = (join‘𝐾) |
2dim.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
2dim.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
1dimN | ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2dim.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
2 | 2dim.c | . . 3 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
3 | 2dim.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
4 | 1, 2, 3 | 2dim 37411 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟))) |
5 | r19.42v 3276 | . . . 4 ⊢ (∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟)) ↔ (𝑃𝐶(𝑃 ∨ 𝑞) ∧ ∃𝑟 ∈ 𝐴 (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟))) | |
6 | 5 | simplbi 497 | . . 3 ⊢ (∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟)) → 𝑃𝐶(𝑃 ∨ 𝑞)) |
7 | 6 | reximi 3174 | . 2 ⊢ (∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑃𝐶(𝑃 ∨ 𝑞) ∧ (𝑃 ∨ 𝑞)𝐶((𝑃 ∨ 𝑞) ∨ 𝑟)) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) |
8 | 4, 7 | syl 17 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴) → ∃𝑞 ∈ 𝐴 𝑃𝐶(𝑃 ∨ 𝑞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 joincjn 17944 ⋖ ccvr 37203 Atomscatm 37204 HLchlt 37291 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |