Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Visualization version   GIF version

Theorem 2dim 39589
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j = (join‘𝐾)
2dim.c 𝐶 = ( ⋖ ‘𝐾)
2dim.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2dim ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝐴   ,𝑞,𝑟   𝐾,𝑞,𝑟   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑟,𝑞)

Proof of Theorem 2dim
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3 = (join‘𝐾)
2 eqid 2733 . . 3 (le‘𝐾) = (le‘𝐾)
3 2dim.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 39586 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
5 df-3an 1088 . . . . . . . 8 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
65rexbii 3080 . . . . . . 7 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
7 r19.42v 3165 . . . . . . 7 (∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
86, 7bitri 275 . . . . . 6 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
98simplbi 497 . . . . 5 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)))
10 simplll 774 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
11 hlatl 39479 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
13 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑞𝐴)
14 simpllr 775 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
152, 3atncmp 39431 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
1612, 13, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
17 necom 2982 . . . . . . . 8 (𝑞𝑃𝑃𝑞)
1816, 17bitr2di 288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞 ↔ ¬ 𝑞(le‘𝐾)𝑃))
19 eqid 2733 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2019, 3atbase 39408 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃 ∈ (Base‘𝐾))
22 2dim.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
2319, 2, 1, 22, 3cvr1 39529 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2410, 21, 13, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2518, 24bitrd 279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞𝑃𝐶(𝑃 𝑞)))
2619, 1, 3hlatjcl 39486 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
2710, 14, 13, 26syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
28 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
2919, 2, 1, 22, 3cvr1 39529 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3010, 27, 28, 29syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3125, 30anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ↔ (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
329, 31imbitrid 244 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3332reximdva 3146 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3433reximdva 3146 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
354, 34mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wrex 3057   class class class wbr 5093  cfv 6486  (class class class)co 7352  Basecbs 17122  lecple 17170  joincjn 18219  ccvr 39381  Atomscatm 39382  AtLatcal 39383  HLchlt 39469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-proset 18202  df-poset 18221  df-plt 18236  df-lub 18252  df-glb 18253  df-join 18254  df-meet 18255  df-p0 18331  df-p1 18332  df-lat 18340  df-clat 18407  df-oposet 39295  df-ol 39297  df-oml 39298  df-covers 39385  df-ats 39386  df-atl 39417  df-cvlat 39441  df-hlat 39470
This theorem is referenced by:  1dimN  39590  1cvratex  39592
  Copyright terms: Public domain W3C validator