Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Visualization version   GIF version

Theorem 2dim 39473
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j = (join‘𝐾)
2dim.c 𝐶 = ( ⋖ ‘𝐾)
2dim.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2dim ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝐴   ,𝑞,𝑟   𝐾,𝑞,𝑟   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑟,𝑞)

Proof of Theorem 2dim
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3 = (join‘𝐾)
2 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
3 2dim.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 39470 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
5 df-3an 1088 . . . . . . . 8 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
65rexbii 3093 . . . . . . 7 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
7 r19.42v 3190 . . . . . . 7 (∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
86, 7bitri 275 . . . . . 6 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
98simplbi 497 . . . . 5 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)))
10 simplll 774 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
11 hlatl 39362 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
13 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑞𝐴)
14 simpllr 775 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
152, 3atncmp 39314 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
1612, 13, 14, 15syl3anc 1372 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
17 necom 2993 . . . . . . . 8 (𝑞𝑃𝑃𝑞)
1816, 17bitr2di 288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞 ↔ ¬ 𝑞(le‘𝐾)𝑃))
19 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2019, 3atbase 39291 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃 ∈ (Base‘𝐾))
22 2dim.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
2319, 2, 1, 22, 3cvr1 39413 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2410, 21, 13, 23syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2518, 24bitrd 279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞𝑃𝐶(𝑃 𝑞)))
2619, 1, 3hlatjcl 39369 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
2710, 14, 13, 26syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
28 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
2919, 2, 1, 22, 3cvr1 39413 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3010, 27, 28, 29syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3125, 30anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ↔ (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
329, 31imbitrid 244 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3332reximdva 3167 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3433reximdva 3167 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
354, 34mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  wrex 3069   class class class wbr 5142  cfv 6560  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  ccvr 39264  Atomscatm 39265  AtLatcal 39266  HLchlt 39352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353
This theorem is referenced by:  1dimN  39474  1cvratex  39476
  Copyright terms: Public domain W3C validator