Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Visualization version   GIF version

Theorem 2dim 39494
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j = (join‘𝐾)
2dim.c 𝐶 = ( ⋖ ‘𝐾)
2dim.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2dim ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝐴   ,𝑞,𝑟   𝐾,𝑞,𝑟   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑟,𝑞)

Proof of Theorem 2dim
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3 = (join‘𝐾)
2 eqid 2736 . . 3 (le‘𝐾) = (le‘𝐾)
3 2dim.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 39491 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
5 df-3an 1088 . . . . . . . 8 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
65rexbii 3084 . . . . . . 7 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
7 r19.42v 3177 . . . . . . 7 (∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
86, 7bitri 275 . . . . . 6 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
98simplbi 497 . . . . 5 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)))
10 simplll 774 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
11 hlatl 39383 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
13 simplr 768 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑞𝐴)
14 simpllr 775 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
152, 3atncmp 39335 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
1612, 13, 14, 15syl3anc 1373 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
17 necom 2986 . . . . . . . 8 (𝑞𝑃𝑃𝑞)
1816, 17bitr2di 288 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞 ↔ ¬ 𝑞(le‘𝐾)𝑃))
19 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2019, 3atbase 39312 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃 ∈ (Base‘𝐾))
22 2dim.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
2319, 2, 1, 22, 3cvr1 39434 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2410, 21, 13, 23syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2518, 24bitrd 279 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞𝑃𝐶(𝑃 𝑞)))
2619, 1, 3hlatjcl 39390 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
2710, 14, 13, 26syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
28 simpr 484 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
2919, 2, 1, 22, 3cvr1 39434 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3010, 27, 28, 29syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3125, 30anbi12d 632 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ↔ (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
329, 31imbitrid 244 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3332reximdva 3154 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3433reximdva 3154 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
354, 34mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  joincjn 18328  ccvr 39285  Atomscatm 39286  AtLatcal 39287  HLchlt 39373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374
This theorem is referenced by:  1dimN  39495  1cvratex  39497
  Copyright terms: Public domain W3C validator