Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2dim Structured version   Visualization version   GIF version

Theorem 2dim 35491
Description: Generate a height-3 element (2-dimensional plane) from an atom. (Contributed by NM, 3-May-2012.)
Hypotheses
Ref Expression
2dim.j = (join‘𝐾)
2dim.c 𝐶 = ( ⋖ ‘𝐾)
2dim.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
2dim ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Distinct variable groups:   𝑟,𝑞,𝐴   ,𝑞,𝑟   𝐾,𝑞,𝑟   𝑃,𝑞,𝑟
Allowed substitution hints:   𝐶(𝑟,𝑞)

Proof of Theorem 2dim
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 2dim.j . . 3 = (join‘𝐾)
2 eqid 2799 . . 3 (le‘𝐾) = (le‘𝐾)
3 2dim.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 33dim1 35488 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
5 df-3an 1110 . . . . . . . 8 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
65rexbii 3222 . . . . . . 7 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
7 r19.42v 3273 . . . . . . 7 (∃𝑠𝐴 ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
86, 7bitri 267 . . . . . 6 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) ↔ ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ∧ ∃𝑠𝐴 ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)))
98simplbi 492 . . . . 5 (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)))
10 simplll 792 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ HL)
11 hlatl 35381 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
1210, 11syl 17 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝐾 ∈ AtLat)
13 simplr 786 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑞𝐴)
14 simpllr 794 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃𝐴)
152, 3atncmp 35333 . . . . . . . . 9 ((𝐾 ∈ AtLat ∧ 𝑞𝐴𝑃𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
1612, 13, 14, 15syl3anc 1491 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑞𝑃))
17 necom 3024 . . . . . . . 8 (𝑞𝑃𝑃𝑞)
1816, 17syl6rbb 280 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞 ↔ ¬ 𝑞(le‘𝐾)𝑃))
19 eqid 2799 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
2019, 3atbase 35310 . . . . . . . . 9 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2114, 20syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑃 ∈ (Base‘𝐾))
22 2dim.c . . . . . . . . 9 𝐶 = ( ⋖ ‘𝐾)
2319, 2, 1, 22, 3cvr1 35431 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑞𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2410, 21, 13, 23syl3anc 1491 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑞(le‘𝐾)𝑃𝑃𝐶(𝑃 𝑞)))
2518, 24bitrd 271 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃𝑞𝑃𝐶(𝑃 𝑞)))
2619, 1, 3hlatjcl 35388 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑞𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
2710, 14, 13, 26syl3anc 1491 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (𝑃 𝑞) ∈ (Base‘𝐾))
28 simpr 478 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → 𝑟𝐴)
2919, 2, 1, 22, 3cvr1 35431 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 𝑞) ∈ (Base‘𝐾) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3010, 27, 28, 29syl3anc 1491 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (¬ 𝑟(le‘𝐾)(𝑃 𝑞) ↔ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
3125, 30anbi12d 625 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → ((𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞)) ↔ (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
329, 31syl5ib 236 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) ∧ 𝑟𝐴) → (∃𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3332reximdva 3197 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴) ∧ 𝑞𝐴) → (∃𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
3433reximdva 3197 . 2 ((𝐾 ∈ HL ∧ 𝑃𝐴) → (∃𝑞𝐴𝑟𝐴𝑠𝐴 (𝑃𝑞 ∧ ¬ 𝑟(le‘𝐾)(𝑃 𝑞) ∧ ¬ 𝑠(le‘𝐾)((𝑃 𝑞) 𝑟)) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟))))
354, 34mpd 15 1 ((𝐾 ∈ HL ∧ 𝑃𝐴) → ∃𝑞𝐴𝑟𝐴 (𝑃𝐶(𝑃 𝑞) ∧ (𝑃 𝑞)𝐶((𝑃 𝑞) 𝑟)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 385  w3a 1108   = wceq 1653  wcel 2157  wne 2971  wrex 3090   class class class wbr 4843  cfv 6101  (class class class)co 6878  Basecbs 16184  lecple 16274  joincjn 17259  ccvr 35283  Atomscatm 35284  AtLatcal 35285  HLchlt 35371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-op 4375  df-uni 4629  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-id 5220  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-proset 17243  df-poset 17261  df-plt 17273  df-lub 17289  df-glb 17290  df-join 17291  df-meet 17292  df-p0 17354  df-p1 17355  df-lat 17361  df-clat 17423  df-oposet 35197  df-ol 35199  df-oml 35200  df-covers 35287  df-ats 35288  df-atl 35319  df-cvlat 35343  df-hlat 35372
This theorem is referenced by:  1dimN  35492  1cvratex  35494
  Copyright terms: Public domain W3C validator