MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgr3cyclex Structured version   Visualization version   GIF version

Theorem umgr3cyclex 27418
Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.)
Hypotheses
Ref Expression
uhgr3cyclex.v 𝑉 = (Vtx‘𝐺)
uhgr3cyclex.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
umgr3cyclex ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Distinct variable groups:   𝐴,𝑓,𝑝   𝐵,𝑓,𝑝   𝐶,𝑓,𝑝   𝑓,𝐺,𝑝
Allowed substitution hints:   𝐸(𝑓,𝑝)   𝑉(𝑓,𝑝)

Proof of Theorem umgr3cyclex
StepHypRef Expression
1 umgruhgr 26275 . . 3 (𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph)
213ad2ant1 1163 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐺 ∈ UHGraph)
3 simp2 1167 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴𝑉𝐵𝑉𝐶𝑉))
4 uhgr3cyclex.e . . . . . 6 𝐸 = (Edg‘𝐺)
54umgredgne 26317 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐵} ∈ 𝐸) → 𝐴𝐵)
653ad2antr1 1239 . . . 4 ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐴𝐵)
7 prcom 4421 . . . . . . . 8 {𝐶, 𝐴} = {𝐴, 𝐶}
87eleq1i 2834 . . . . . . 7 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
98biimpi 207 . . . . . 6 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
1093ad2ant3 1165 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐶} ∈ 𝐸)
114umgredgne 26317 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐴, 𝐶} ∈ 𝐸) → 𝐴𝐶)
1210, 11sylan2 586 . . . 4 ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐴𝐶)
13 simp2 1167 . . . . 5 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐵, 𝐶} ∈ 𝐸)
144umgredgne 26317 . . . . 5 ((𝐺 ∈ UMGraph ∧ {𝐵, 𝐶} ∈ 𝐸) → 𝐵𝐶)
1513, 14sylan2 586 . . . 4 ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → 𝐵𝐶)
166, 12, 153jca 1158 . . 3 ((𝐺 ∈ UMGraph ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴𝐵𝐴𝐶𝐵𝐶))
17163adant2 1161 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (𝐴𝐵𝐴𝐶𝐵𝐶))
18 simp3 1168 . 2 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))
19 uhgr3cyclex.v . . 3 𝑉 = (Vtx‘𝐺)
2019, 4uhgr3cyclex 27417 . 2 ((𝐺 ∈ UHGraph ∧ ((𝐴𝑉𝐵𝑉𝐶𝑉) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
212, 3, 17, 18, 20syl121anc 1494 1 ((𝐺 ∈ UMGraph ∧ (𝐴𝑉𝐵𝑉𝐶𝑉) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃𝑓𝑝(𝑓(Cycles‘𝐺)𝑝 ∧ (♯‘𝑓) = 3 ∧ (𝑝‘0) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2936  {cpr 4335   class class class wbr 4808  cfv 6067  0cc0 10188  3c3 11327  chash 13320  Vtxcvtx 26164  Edgcedg 26215  UHGraphcuhgr 26227  UMGraphcumgr 26252  Cyclesccycls 26971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-ifp 1086  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-card 9015  df-cda 9242  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-2 11334  df-3 11335  df-4 11336  df-n0 11538  df-z 11624  df-uz 11886  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13486  df-concat 13541  df-s1 13566  df-s2 13878  df-s3 13879  df-s4 13880  df-edg 26216  df-uhgr 26229  df-upgr 26253  df-umgr 26254  df-wlks 26785  df-trls 26879  df-pths 26902  df-cycls 26973
This theorem is referenced by:  umgr3v3e3cycl  27419  3cyclfrgr  27525
  Copyright terms: Public domain W3C validator