![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > umgr3cyclex | Structured version Visualization version GIF version |
Description: If there are three (different) vertices in a multigraph which are mutually connected by edges, there is a 3-cycle in the graph containing one of these vertices. (Contributed by Alexander van der Vekens, 17-Nov-2017.) (Revised by AV, 12-Feb-2021.) |
Ref | Expression |
---|---|
uhgr3cyclex.v | β’ π = (VtxβπΊ) |
uhgr3cyclex.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
umgr3cyclex | β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 3 β§ (πβ0) = π΄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | umgruhgr 28833 | . . 3 β’ (πΊ β UMGraph β πΊ β UHGraph) | |
2 | 1 | 3ad2ant1 1130 | . 2 β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β πΊ β UHGraph) |
3 | simp2 1134 | . 2 β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β (π΄ β π β§ π΅ β π β§ πΆ β π)) | |
4 | uhgr3cyclex.e | . . . . . 6 β’ πΈ = (EdgβπΊ) | |
5 | 4 | umgredgne 28874 | . . . . 5 β’ ((πΊ β UMGraph β§ {π΄, π΅} β πΈ) β π΄ β π΅) |
6 | 5 | 3ad2antr1 1185 | . . . 4 β’ ((πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β π΄ β π΅) |
7 | prcom 4728 | . . . . . . . 8 β’ {πΆ, π΄} = {π΄, πΆ} | |
8 | 7 | eleq1i 2816 | . . . . . . 7 β’ ({πΆ, π΄} β πΈ β {π΄, πΆ} β πΈ) |
9 | 8 | biimpi 215 | . . . . . 6 β’ ({πΆ, π΄} β πΈ β {π΄, πΆ} β πΈ) |
10 | 9 | 3ad2ant3 1132 | . . . . 5 β’ (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ) β {π΄, πΆ} β πΈ) |
11 | 4 | umgredgne 28874 | . . . . 5 β’ ((πΊ β UMGraph β§ {π΄, πΆ} β πΈ) β π΄ β πΆ) |
12 | 10, 11 | sylan2 592 | . . . 4 β’ ((πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β π΄ β πΆ) |
13 | simp2 1134 | . . . . 5 β’ (({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ) β {π΅, πΆ} β πΈ) | |
14 | 4 | umgredgne 28874 | . . . . 5 β’ ((πΊ β UMGraph β§ {π΅, πΆ} β πΈ) β π΅ β πΆ) |
15 | 13, 14 | sylan2 592 | . . . 4 β’ ((πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β π΅ β πΆ) |
16 | 6, 12, 15 | 3jca 1125 | . . 3 β’ ((πΊ β UMGraph β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β (π΄ β π΅ β§ π΄ β πΆ β§ π΅ β πΆ)) |
17 | 16 | 3adant2 1128 | . 2 β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β (π΄ β π΅ β§ π΄ β πΆ β§ π΅ β πΆ)) |
18 | simp3 1135 | . 2 β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) | |
19 | uhgr3cyclex.v | . . 3 β’ π = (VtxβπΊ) | |
20 | 19, 4 | uhgr3cyclex 29904 | . 2 β’ ((πΊ β UHGraph β§ ((π΄ β π β§ π΅ β π β§ πΆ β π) β§ (π΄ β π΅ β§ π΄ β πΆ β§ π΅ β πΆ)) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 3 β§ (πβ0) = π΄)) |
21 | 2, 3, 17, 18, 20 | syl121anc 1372 | 1 β’ ((πΊ β UMGraph β§ (π΄ β π β§ π΅ β π β§ πΆ β π) β§ ({π΄, π΅} β πΈ β§ {π΅, πΆ} β πΈ β§ {πΆ, π΄} β πΈ)) β βπβπ(π(CyclesβπΊ)π β§ (β―βπ) = 3 β§ (πβ0) = π΄)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 βwex 1773 β wcel 2098 β wne 2932 {cpr 4622 class class class wbr 5138 βcfv 6533 0cc0 11106 3c3 12265 β―chash 14287 Vtxcvtx 28725 Edgcedg 28776 UHGraphcuhgr 28785 UMGraphcumgr 28810 Cyclesccycls 29511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1060 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-int 4941 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-oadd 8465 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-n0 12470 df-z 12556 df-uz 12820 df-fz 13482 df-fzo 13625 df-hash 14288 df-word 14462 df-concat 14518 df-s1 14543 df-s2 14796 df-s3 14797 df-s4 14798 df-edg 28777 df-uhgr 28787 df-upgr 28811 df-umgr 28812 df-wlks 29325 df-trls 29418 df-pths 29442 df-cycls 29513 |
This theorem is referenced by: umgr3v3e3cycl 29906 3cyclfrgr 30010 cusgr3cyclex 34616 |
Copyright terms: Public domain | W3C validator |