Proof of Theorem pmapjlln1
Step | Hyp | Ref
| Expression |
1 | | simpl 487 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) |
2 | | pmapjat.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
3 | | pmapjat.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
4 | | pmapjat.m |
. . . . 5
⊢ 𝑀 = (pmap‘𝐾) |
5 | 2, 3, 4 | pmapssat 37336 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) |
6 | 5 | 3ad2antr1 1186 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑋) ⊆ 𝐴) |
7 | | simpr2 1193 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
8 | 2, 3 | atbase 36866 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐵) |
10 | 2, 3, 4 | pmapssat 37336 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) |
11 | 9, 10 | syldan 595 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑄) ⊆ 𝐴) |
12 | | simpr3 1194 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
13 | 2, 3 | atbase 36866 |
. . . . 5
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) |
14 | 12, 13 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐵) |
15 | 2, 3, 4 | pmapssat 37336 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐵) → (𝑀‘𝑅) ⊆ 𝐴) |
16 | 14, 15 | syldan 595 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑅) ⊆ 𝐴) |
17 | | pmapjat.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
18 | 3, 17 | paddass 37415 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑀‘𝑋) ⊆ 𝐴 ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑅) ⊆ 𝐴)) → (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅)) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) |
19 | 1, 6, 11, 16, 18 | syl13anc 1370 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅)) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) |
20 | | hllat 36940 |
. . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
21 | 20 | adantr 485 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
22 | | simpr1 1192 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑋 ∈ 𝐵) |
23 | | pmapjat.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
24 | 2, 23 | latjcl 17728 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
25 | 21, 22, 9, 24 | syl3anc 1369 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ∈ 𝐵) |
26 | 2, 23, 3, 4, 17 | pmapjat1 37430 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ 𝐵 ∧ 𝑅 ∈ 𝐴) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅))) |
27 | 1, 25, 12, 26 | syl3anc 1369 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅))) |
28 | 2, 23 | latjass 17772 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵)) → ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅))) |
29 | 21, 22, 9, 14, 28 | syl13anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅))) |
30 | 29 | fveq2d 6663 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅)))) |
31 | 2, 23, 3, 4, 17 | pmapjat1 37430 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
32 | 31 | 3adant3r3 1182 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) |
33 | 32 | oveq1d 7166 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅)) = (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅))) |
34 | 27, 30, 33 | 3eqtr3d 2802 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅))) |
35 | 2, 23, 3, 4, 17 | pmapjat1 37430 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑅)) = ((𝑀‘𝑄) + (𝑀‘𝑅))) |
36 | 1, 9, 12, 35 | syl3anc 1369 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑄 ∨ 𝑅)) = ((𝑀‘𝑄) + (𝑀‘𝑅))) |
37 | 36 | oveq2d 7167 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) |
38 | 19, 34, 37 | 3eqtr4d 2804 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅)))) |