Proof of Theorem pmapjlln1
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) | 
| 2 |  | pmapjat.b | . . . . 5
⊢ 𝐵 = (Base‘𝐾) | 
| 3 |  | pmapjat.a | . . . . 5
⊢ 𝐴 = (Atoms‘𝐾) | 
| 4 |  | pmapjat.m | . . . . 5
⊢ 𝑀 = (pmap‘𝐾) | 
| 5 | 2, 3, 4 | pmapssat 39761 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑀‘𝑋) ⊆ 𝐴) | 
| 6 | 5 | 3ad2antr1 1189 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑋) ⊆ 𝐴) | 
| 7 |  | simpr2 1196 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐴) | 
| 8 | 2, 3 | atbase 39290 | . . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) | 
| 9 | 7, 8 | syl 17 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐵) | 
| 10 | 2, 3, 4 | pmapssat 39761 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵) → (𝑀‘𝑄) ⊆ 𝐴) | 
| 11 | 9, 10 | syldan 591 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑄) ⊆ 𝐴) | 
| 12 |  | simpr3 1197 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) | 
| 13 | 2, 3 | atbase 39290 | . . . . 5
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ 𝐵) | 
| 14 | 12, 13 | syl 17 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐵) | 
| 15 | 2, 3, 4 | pmapssat 39761 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐵) → (𝑀‘𝑅) ⊆ 𝐴) | 
| 16 | 14, 15 | syldan 591 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘𝑅) ⊆ 𝐴) | 
| 17 |  | pmapjat.p | . . . 4
⊢  + =
(+𝑃‘𝐾) | 
| 18 | 3, 17 | paddass 39840 | . . 3
⊢ ((𝐾 ∈ HL ∧ ((𝑀‘𝑋) ⊆ 𝐴 ∧ (𝑀‘𝑄) ⊆ 𝐴 ∧ (𝑀‘𝑅) ⊆ 𝐴)) → (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅)) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) | 
| 19 | 1, 6, 11, 16, 18 | syl13anc 1374 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅)) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) | 
| 20 |  | hllat 39364 | . . . . . 6
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | 
| 21 | 20 | adantr 480 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) | 
| 22 |  | simpr1 1195 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑋 ∈ 𝐵) | 
| 23 |  | pmapjat.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 24 | 2, 23 | latjcl 18484 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 25 | 21, 22, 9, 24 | syl3anc 1373 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑋 ∨ 𝑄) ∈ 𝐵) | 
| 26 | 2, 23, 3, 4, 17 | pmapjat1 39855 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ 𝐵 ∧ 𝑅 ∈ 𝐴) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅))) | 
| 27 | 1, 25, 12, 26 | syl3anc 1373 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅))) | 
| 28 | 2, 23 | latjass 18528 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐵)) → ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅))) | 
| 29 | 21, 22, 9, 14, 28 | syl13anc 1374 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅))) | 
| 30 | 29 | fveq2d 6910 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘((𝑋 ∨ 𝑄) ∨ 𝑅)) = (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅)))) | 
| 31 | 2, 23, 3, 4, 17 | pmapjat1 39855 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) | 
| 32 | 31 | 3adant3r3 1185 | . . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ 𝑄)) = ((𝑀‘𝑋) + (𝑀‘𝑄))) | 
| 33 | 32 | oveq1d 7446 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑀‘(𝑋 ∨ 𝑄)) + (𝑀‘𝑅)) = (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅))) | 
| 34 | 27, 30, 33 | 3eqtr3d 2785 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = (((𝑀‘𝑋) + (𝑀‘𝑄)) + (𝑀‘𝑅))) | 
| 35 | 2, 23, 3, 4, 17 | pmapjat1 39855 | . . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐵 ∧ 𝑅 ∈ 𝐴) → (𝑀‘(𝑄 ∨ 𝑅)) = ((𝑀‘𝑄) + (𝑀‘𝑅))) | 
| 36 | 1, 9, 12, 35 | syl3anc 1373 | . . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑄 ∨ 𝑅)) = ((𝑀‘𝑄) + (𝑀‘𝑅))) | 
| 37 | 36 | oveq2d 7447 | . 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + ((𝑀‘𝑄) + (𝑀‘𝑅)))) | 
| 38 | 19, 34, 37 | 3eqtr4d 2787 | 1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑀‘(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((𝑀‘𝑋) + (𝑀‘(𝑄 ∨ 𝑅)))) |