Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjlln1 Structured version   Visualization version   GIF version

Theorem pmapjlln1 38721
Description: The projective map of the join of a lattice element and a lattice line (expressed as the join 𝑄 ∨ 𝑅 of two atoms). (Contributed by NM, 16-Sep-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐡 = (Baseβ€˜πΎ)
pmapjat.j ∨ = (joinβ€˜πΎ)
pmapjat.a 𝐴 = (Atomsβ€˜πΎ)
pmapjat.m 𝑀 = (pmapβ€˜πΎ)
pmapjat.p + = (+π‘ƒβ€˜πΎ)
Assertion
Ref Expression
pmapjlln1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((π‘€β€˜π‘‹) + (π‘€β€˜(𝑄 ∨ 𝑅))))

Proof of Theorem pmapjlln1
StepHypRef Expression
1 simpl 483 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝐾 ∈ HL)
2 pmapjat.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
3 pmapjat.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
4 pmapjat.m . . . . 5 𝑀 = (pmapβ€˜πΎ)
52, 3, 4pmapssat 38625 . . . 4 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) βŠ† 𝐴)
653ad2antr1 1188 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜π‘‹) βŠ† 𝐴)
7 simpr2 1195 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
82, 3atbase 38154 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
97, 8syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝑄 ∈ 𝐡)
102, 3, 4pmapssat 38625 . . . 4 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐡) β†’ (π‘€β€˜π‘„) βŠ† 𝐴)
119, 10syldan 591 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜π‘„) βŠ† 𝐴)
12 simpr3 1196 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
132, 3atbase 38154 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ 𝐡)
1412, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝑅 ∈ 𝐡)
152, 3, 4pmapssat 38625 . . . 4 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐡) β†’ (π‘€β€˜π‘…) βŠ† 𝐴)
1614, 15syldan 591 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜π‘…) βŠ† 𝐴)
17 pmapjat.p . . . 4 + = (+π‘ƒβ€˜πΎ)
183, 17paddass 38704 . . 3 ((𝐾 ∈ HL ∧ ((π‘€β€˜π‘‹) βŠ† 𝐴 ∧ (π‘€β€˜π‘„) βŠ† 𝐴 ∧ (π‘€β€˜π‘…) βŠ† 𝐴)) β†’ (((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)) + (π‘€β€˜π‘…)) = ((π‘€β€˜π‘‹) + ((π‘€β€˜π‘„) + (π‘€β€˜π‘…))))
191, 6, 11, 16, 18syl13anc 1372 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)) + (π‘€β€˜π‘…)) = ((π‘€β€˜π‘‹) + ((π‘€β€˜π‘„) + (π‘€β€˜π‘…))))
20 hllat 38228 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
2120adantr 481 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
22 simpr1 1194 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ 𝑋 ∈ 𝐡)
23 pmapjat.j . . . . . 6 ∨ = (joinβ€˜πΎ)
242, 23latjcl 18391 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
2521, 22, 9, 24syl3anc 1371 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (𝑋 ∨ 𝑄) ∈ 𝐡)
262, 23, 3, 4, 17pmapjat1 38719 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∨ 𝑄) ∈ 𝐡 ∧ 𝑅 ∈ 𝐴) β†’ (π‘€β€˜((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((π‘€β€˜(𝑋 ∨ 𝑄)) + (π‘€β€˜π‘…)))
271, 25, 12, 26syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜((𝑋 ∨ 𝑄) ∨ 𝑅)) = ((π‘€β€˜(𝑋 ∨ 𝑄)) + (π‘€β€˜π‘…)))
282, 23latjass 18435 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡 ∧ 𝑅 ∈ 𝐡)) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅)))
2921, 22, 9, 14, 28syl13anc 1372 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((𝑋 ∨ 𝑄) ∨ 𝑅) = (𝑋 ∨ (𝑄 ∨ 𝑅)))
3029fveq2d 6895 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜((𝑋 ∨ 𝑄) ∨ 𝑅)) = (π‘€β€˜(𝑋 ∨ (𝑄 ∨ 𝑅))))
312, 23, 3, 4, 17pmapjat1 38719 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴) β†’ (π‘€β€˜(𝑋 ∨ 𝑄)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)))
32313adant3r3 1184 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜(𝑋 ∨ 𝑄)) = ((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)))
3332oveq1d 7423 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((π‘€β€˜(𝑋 ∨ 𝑄)) + (π‘€β€˜π‘…)) = (((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)) + (π‘€β€˜π‘…)))
3427, 30, 333eqtr3d 2780 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜(𝑋 ∨ (𝑄 ∨ 𝑅))) = (((π‘€β€˜π‘‹) + (π‘€β€˜π‘„)) + (π‘€β€˜π‘…)))
352, 23, 3, 4, 17pmapjat1 38719 . . . 4 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐡 ∧ 𝑅 ∈ 𝐴) β†’ (π‘€β€˜(𝑄 ∨ 𝑅)) = ((π‘€β€˜π‘„) + (π‘€β€˜π‘…)))
361, 9, 12, 35syl3anc 1371 . . 3 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜(𝑄 ∨ 𝑅)) = ((π‘€β€˜π‘„) + (π‘€β€˜π‘…)))
3736oveq2d 7424 . 2 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ ((π‘€β€˜π‘‹) + (π‘€β€˜(𝑄 ∨ 𝑅))) = ((π‘€β€˜π‘‹) + ((π‘€β€˜π‘„) + (π‘€β€˜π‘…))))
3819, 34, 373eqtr4d 2782 1 ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝐡 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) β†’ (π‘€β€˜(𝑋 ∨ (𝑄 ∨ 𝑅))) = ((π‘€β€˜π‘‹) + (π‘€β€˜(𝑄 ∨ 𝑅))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   βŠ† wss 3948  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  joincjn 18263  Latclat 18383  Atomscatm 38128  HLchlt 38215  pmapcpmap 38363  +𝑃cpadd 38661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-pmap 38370  df-padd 38662
This theorem is referenced by:  llnmod1i2  38726
  Copyright terms: Public domain W3C validator