Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapjlln1 Structured version   Visualization version   GIF version

Theorem pmapjlln1 35663
Description: The projective map of the join of a lattice element and a lattice line (expressed as the join 𝑄 𝑅 of two atoms). (Contributed by NM, 16-Sep-2012.)
Hypotheses
Ref Expression
pmapjat.b 𝐵 = (Base‘𝐾)
pmapjat.j = (join‘𝐾)
pmapjat.a 𝐴 = (Atoms‘𝐾)
pmapjat.m 𝑀 = (pmap‘𝐾)
pmapjat.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmapjlln1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘(𝑋 (𝑄 𝑅))) = ((𝑀𝑋) + (𝑀‘(𝑄 𝑅))))

Proof of Theorem pmapjlln1
StepHypRef Expression
1 simpl 468 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
2 pmapjat.b . . . . 5 𝐵 = (Base‘𝐾)
3 pmapjat.a . . . . 5 𝐴 = (Atoms‘𝐾)
4 pmapjat.m . . . . 5 𝑀 = (pmap‘𝐾)
52, 3, 4pmapssat 35567 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑀𝑋) ⊆ 𝐴)
653ad2antr1 1203 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀𝑋) ⊆ 𝐴)
7 simpr2 1235 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
82, 3atbase 35098 . . . . 5 (𝑄𝐴𝑄𝐵)
97, 8syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝑄𝐵)
102, 3, 4pmapssat 35567 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐵) → (𝑀𝑄) ⊆ 𝐴)
119, 10syldan 579 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀𝑄) ⊆ 𝐴)
12 simpr3 1237 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
132, 3atbase 35098 . . . . 5 (𝑅𝐴𝑅𝐵)
1412, 13syl 17 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝑅𝐵)
152, 3, 4pmapssat 35567 . . . 4 ((𝐾 ∈ HL ∧ 𝑅𝐵) → (𝑀𝑅) ⊆ 𝐴)
1614, 15syldan 579 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀𝑅) ⊆ 𝐴)
17 pmapjat.p . . . 4 + = (+𝑃𝐾)
183, 17paddass 35646 . . 3 ((𝐾 ∈ HL ∧ ((𝑀𝑋) ⊆ 𝐴 ∧ (𝑀𝑄) ⊆ 𝐴 ∧ (𝑀𝑅) ⊆ 𝐴)) → (((𝑀𝑋) + (𝑀𝑄)) + (𝑀𝑅)) = ((𝑀𝑋) + ((𝑀𝑄) + (𝑀𝑅))))
191, 6, 11, 16, 18syl13anc 1478 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (((𝑀𝑋) + (𝑀𝑄)) + (𝑀𝑅)) = ((𝑀𝑋) + ((𝑀𝑄) + (𝑀𝑅))))
20 hllat 35172 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2120adantr 466 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
22 simpr1 1233 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → 𝑋𝐵)
23 pmapjat.j . . . . . 6 = (join‘𝐾)
242, 23latjcl 17259 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑄𝐵) → (𝑋 𝑄) ∈ 𝐵)
2521, 22, 9, 24syl3anc 1476 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑋 𝑄) ∈ 𝐵)
262, 23, 3, 4, 17pmapjat1 35661 . . . 4 ((𝐾 ∈ HL ∧ (𝑋 𝑄) ∈ 𝐵𝑅𝐴) → (𝑀‘((𝑋 𝑄) 𝑅)) = ((𝑀‘(𝑋 𝑄)) + (𝑀𝑅)))
271, 25, 12, 26syl3anc 1476 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘((𝑋 𝑄) 𝑅)) = ((𝑀‘(𝑋 𝑄)) + (𝑀𝑅)))
282, 23latjass 17303 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑋𝐵𝑄𝐵𝑅𝐵)) → ((𝑋 𝑄) 𝑅) = (𝑋 (𝑄 𝑅)))
2921, 22, 9, 14, 28syl13anc 1478 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → ((𝑋 𝑄) 𝑅) = (𝑋 (𝑄 𝑅)))
3029fveq2d 6336 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘((𝑋 𝑄) 𝑅)) = (𝑀‘(𝑋 (𝑄 𝑅))))
312, 23, 3, 4, 17pmapjat1 35661 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑄𝐴) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
32313adant3r3 1199 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘(𝑋 𝑄)) = ((𝑀𝑋) + (𝑀𝑄)))
3332oveq1d 6808 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → ((𝑀‘(𝑋 𝑄)) + (𝑀𝑅)) = (((𝑀𝑋) + (𝑀𝑄)) + (𝑀𝑅)))
3427, 30, 333eqtr3d 2813 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘(𝑋 (𝑄 𝑅))) = (((𝑀𝑋) + (𝑀𝑄)) + (𝑀𝑅)))
352, 23, 3, 4, 17pmapjat1 35661 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐵𝑅𝐴) → (𝑀‘(𝑄 𝑅)) = ((𝑀𝑄) + (𝑀𝑅)))
361, 9, 12, 35syl3anc 1476 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘(𝑄 𝑅)) = ((𝑀𝑄) + (𝑀𝑅)))
3736oveq2d 6809 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → ((𝑀𝑋) + (𝑀‘(𝑄 𝑅))) = ((𝑀𝑋) + ((𝑀𝑄) + (𝑀𝑅))))
3819, 34, 373eqtr4d 2815 1 ((𝐾 ∈ HL ∧ (𝑋𝐵𝑄𝐴𝑅𝐴)) → (𝑀‘(𝑋 (𝑄 𝑅))) = ((𝑀𝑋) + (𝑀‘(𝑄 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1071   = wceq 1631  wcel 2145  wss 3723  cfv 6031  (class class class)co 6793  Basecbs 16064  joincjn 17152  Latclat 17253  Atomscatm 35072  HLchlt 35159  pmapcpmap 35305  +𝑃cpadd 35603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-1st 7315  df-2nd 7316  df-preset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-lat 17254  df-clat 17316  df-oposet 34985  df-ol 34987  df-oml 34988  df-covers 35075  df-ats 35076  df-atl 35107  df-cvlat 35131  df-hlat 35160  df-pmap 35312  df-padd 35604
This theorem is referenced by:  llnmod1i2  35668
  Copyright terms: Public domain W3C validator