MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat3a Structured version   Visualization version   GIF version

Theorem pfxccat3a 14692
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))

Proof of Theorem pfxccat3a
StepHypRef Expression
1 simprl 767 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 13598 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈ ℕ0)
32adantl 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
43adantl 480 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ℕ0)
5 swrdccatin2.l . . . . . . . . . . 11 𝐿 = (♯‘𝐴)
6 lencl 14487 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
75, 6eqeltrid 2835 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
87adantr 479 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℕ0)
98adantr 479 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
109adantl 480 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈ ℕ0)
11 simpl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁𝐿)
12 elfz2nn0 13596 . . . . . . 7 (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0𝐿 ∈ ℕ0𝑁𝐿))
134, 10, 11, 12syl3anbrc 1341 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿))
14 df-3an 1087 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿)))
151, 13, 14sylanbrc 581 . . . . 5 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)))
165pfxccatpfx1 14690 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
1715, 16syl 17 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
18 iftrue 4533 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
1918adantr 479 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2017, 19eqtr4d 2773 . . 3 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
21 simprl 767 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
22 elfz2nn0 13596 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)))
235eleq1i 2822 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
24 nn0ltp1le 12624 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁))
25 nn0re 12485 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
26 nn0re 12485 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 ltnle 11297 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2825, 26, 27syl2an 594 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2924, 28bitr3d 280 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
30293ad2antr1 1186 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
31 simpr3 1194 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀))
3231anim1ci 614 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀)))
33 nn0z 12587 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
34333ad2ant1 1131 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ)
3534adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
3635adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ)
37 peano2nn0 12516 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
3837nn0zd 12588 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℤ)
3938adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ)
4039adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ)
41 nn0z 12587 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ)
42413ad2ant2 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ)
4342adantl 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ)
4443adantr 479 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ)
45 elfz 13494 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧ (𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4636, 40, 44, 45syl3anc 1369 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4732, 46mpbird 256 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
4847ex 411 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
4930, 48sylbird 259 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5049ex 411 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5123, 50sylbir 234 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
526, 51syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5352adantr 479 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5422, 53biimtrid 241 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5554imp 405 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5655impcom 406 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
57 df-3an 1087 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5821, 56, 57sylanbrc 581 . . . . 5 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
59 pfxccatpfx2.m . . . . . 6 𝑀 = (♯‘𝐵)
605, 59pfxccatpfx2 14691 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6158, 60syl 17 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
62 iffalse 4536 . . . . 5 𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6362adantr 479 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6461, 63eqtr4d 2773 . . 3 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6520, 64pm2.61ian 808 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6665ex 411 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394  w3a 1085   = wceq 1539  wcel 2104  ifcif 4527   class class class wbr 5147  cfv 6542  (class class class)co 7411  cr 11111  0cc0 11112  1c1 11113   + caddc 11115   < clt 11252  cle 11253  cmin 11448  0cn0 12476  cz 12562  ...cfz 13488  chash 14294  Word cword 14468   ++ cconcat 14524   prefix cpfx 14624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13489  df-fzo 13632  df-hash 14295  df-word 14469  df-concat 14525  df-substr 14595  df-pfx 14625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator