MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat3a Structured version   Visualization version   GIF version

Theorem pfxccat3a 14773
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))

Proof of Theorem pfxccat3a
StepHypRef Expression
1 simprl 771 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 13657 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈ ℕ0)
32adantl 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
43adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ℕ0)
5 swrdccatin2.l . . . . . . . . . . 11 𝐿 = (♯‘𝐴)
6 lencl 14568 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
75, 6eqeltrid 2843 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
87adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℕ0)
98adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
109adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈ ℕ0)
11 simpl 482 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁𝐿)
12 elfz2nn0 13655 . . . . . . 7 (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0𝐿 ∈ ℕ0𝑁𝐿))
134, 10, 11, 12syl3anbrc 1342 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿))
14 df-3an 1088 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿)))
151, 13, 14sylanbrc 583 . . . . 5 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)))
165pfxccatpfx1 14771 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
1715, 16syl 17 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
18 iftrue 4537 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
1918adantr 480 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2017, 19eqtr4d 2778 . . 3 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
21 simprl 771 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
22 elfz2nn0 13655 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)))
235eleq1i 2830 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
24 nn0ltp1le 12674 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁))
25 nn0re 12533 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
26 nn0re 12533 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 ltnle 11338 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2825, 26, 27syl2an 596 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2924, 28bitr3d 281 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
30293ad2antr1 1187 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
31 simpr3 1195 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀))
3231anim1ci 616 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀)))
33 nn0z 12636 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
34333ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ)
37 peano2nn0 12564 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
3837nn0zd 12637 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℤ)
3938adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ)
4039adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ)
41 nn0z 12636 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ)
42413ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ)
4342adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ)
4443adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ)
45 elfz 13550 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧ (𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4636, 40, 44, 45syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4732, 46mpbird 257 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
4847ex 412 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
4930, 48sylbird 260 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5049ex 412 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5123, 50sylbir 235 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
526, 51syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5352adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5422, 53biimtrid 242 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5554imp 406 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5655impcom 407 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
57 df-3an 1088 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5821, 56, 57sylanbrc 583 . . . . 5 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
59 pfxccatpfx2.m . . . . . 6 𝑀 = (♯‘𝐵)
605, 59pfxccatpfx2 14772 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6158, 60syl 17 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
62 iffalse 4540 . . . . 5 𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6362adantr 480 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6461, 63eqtr4d 2778 . . 3 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6520, 64pm2.61ian 812 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6665ex 412 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  ifcif 4531   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   < clt 11293  cle 11294  cmin 11490  0cn0 12524  cz 12611  ...cfz 13544  chash 14366  Word cword 14549   ++ cconcat 14605   prefix cpfx 14705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-substr 14676  df-pfx 14706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator