MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccat3a Structured version   Visualization version   GIF version

Theorem pfxccat3a 14693
Description: A prefix of a concatenation is either a prefix of the first concatenated word or a concatenation of the first word with a prefix of the second word. (Contributed by Alexander van der Vekens, 31-Mar-2018.) (Revised by AV, 10-May-2020.)
Hypotheses
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
pfxccatpfx2.m 𝑀 = (♯‘𝐵)
Assertion
Ref Expression
pfxccat3a ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))

Proof of Theorem pfxccat3a
StepHypRef Expression
1 simprl 768 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
2 elfznn0 13599 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) → 𝑁 ∈ ℕ0)
32adantl 481 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝑁 ∈ ℕ0)
43adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ℕ0)
5 swrdccatin2.l . . . . . . . . . . 11 𝐿 = (♯‘𝐴)
6 lencl 14488 . . . . . . . . . . 11 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
75, 6eqeltrid 2836 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
87adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → 𝐿 ∈ ℕ0)
98adantr 480 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → 𝐿 ∈ ℕ0)
109adantl 481 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝐿 ∈ ℕ0)
11 simpl 482 . . . . . . 7 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁𝐿)
12 elfz2nn0 13597 . . . . . . 7 (𝑁 ∈ (0...𝐿) ↔ (𝑁 ∈ ℕ0𝐿 ∈ ℕ0𝑁𝐿))
134, 10, 11, 12syl3anbrc 1342 . . . . . 6 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ (0...𝐿))
14 df-3an 1088 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...𝐿)))
151, 13, 14sylanbrc 582 . . . . 5 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)))
165pfxccatpfx1 14691 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ (0...𝐿)) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
1715, 16syl 17 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 prefix 𝑁))
18 iftrue 4534 . . . . 5 (𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
1918adantr 480 . . . 4 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 prefix 𝑁))
2017, 19eqtr4d 2774 . . 3 ((𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
21 simprl 768 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉))
22 elfz2nn0 13597 . . . . . . . . 9 (𝑁 ∈ (0...(𝐿 + 𝑀)) ↔ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)))
235eleq1i 2823 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
24 nn0ltp1le 12625 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ (𝐿 + 1) ≤ 𝑁))
25 nn0re 12486 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
26 nn0re 12486 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
27 ltnle 11298 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2825, 26, 27syl2an 595 . . . . . . . . . . . . . . . 16 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐿 < 𝑁 ↔ ¬ 𝑁𝐿))
2924, 28bitr3d 281 . . . . . . . . . . . . . . 15 ((𝐿 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
30293ad2antr1 1187 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁 ↔ ¬ 𝑁𝐿))
31 simpr3 1195 . . . . . . . . . . . . . . . . 17 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ≤ (𝐿 + 𝑀))
3231anim1ci 615 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀)))
33 nn0z 12588 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
34333ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → 𝑁 ∈ ℤ)
3534adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → 𝑁 ∈ ℤ)
3635adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ℤ)
37 peano2nn0 12517 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℕ0)
3837nn0zd 12589 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → (𝐿 + 1) ∈ ℤ)
3938adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 1) ∈ ℤ)
4039adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 1) ∈ ℤ)
41 nn0z 12588 . . . . . . . . . . . . . . . . . . . 20 ((𝐿 + 𝑀) ∈ ℕ0 → (𝐿 + 𝑀) ∈ ℤ)
42413ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (𝐿 + 𝑀) ∈ ℤ)
4342adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (𝐿 + 𝑀) ∈ ℤ)
4443adantr 480 . . . . . . . . . . . . . . . . 17 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝐿 + 𝑀) ∈ ℤ)
45 elfz 13495 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ (𝐿 + 1) ∈ ℤ ∧ (𝐿 + 𝑀) ∈ ℤ) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4636, 40, 44, 45syl3anc 1370 . . . . . . . . . . . . . . . 16 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → (𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)) ↔ ((𝐿 + 1) ≤ 𝑁𝑁 ≤ (𝐿 + 𝑀))))
4732, 46mpbird 257 . . . . . . . . . . . . . . 15 (((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) ∧ (𝐿 + 1) ≤ 𝑁) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
4847ex 412 . . . . . . . . . . . . . 14 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → ((𝐿 + 1) ≤ 𝑁𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
4930, 48sylbird 260 . . . . . . . . . . . . 13 ((𝐿 ∈ ℕ0 ∧ (𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5049ex 412 . . . . . . . . . . . 12 (𝐿 ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5123, 50sylbir 234 . . . . . . . . . . 11 ((♯‘𝐴) ∈ ℕ0 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
526, 51syl 17 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5352adantr 480 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝑁 ∈ ℕ0 ∧ (𝐿 + 𝑀) ∈ ℕ0𝑁 ≤ (𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5422, 53biimtrid 241 . . . . . . . 8 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))))
5554imp 406 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → (¬ 𝑁𝐿𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5655impcom 407 . . . . . 6 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀)))
57 df-3an 1088 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) ↔ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
5821, 56, 57sylanbrc 582 . . . . 5 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → (𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))))
59 pfxccatpfx2.m . . . . . 6 𝑀 = (♯‘𝐵)
605, 59pfxccatpfx2 14692 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉𝑁 ∈ ((𝐿 + 1)...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6158, 60syl 17 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
62 iffalse 4537 . . . . 5 𝑁𝐿 → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6362adantr 480 . . . 4 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))) = (𝐴 ++ (𝐵 prefix (𝑁𝐿))))
6461, 63eqtr4d 2774 . . 3 ((¬ 𝑁𝐿 ∧ ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀)))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6520, 64pm2.61ian 809 . 2 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑁 ∈ (0...(𝐿 + 𝑀))) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿)))))
6665ex 412 1 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑁 ∈ (0...(𝐿 + 𝑀)) → ((𝐴 ++ 𝐵) prefix 𝑁) = if(𝑁𝐿, (𝐴 prefix 𝑁), (𝐴 ++ (𝐵 prefix (𝑁𝐿))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  ifcif 4528   class class class wbr 5148  cfv 6543  (class class class)co 7412  cr 11113  0cc0 11114  1c1 11115   + caddc 11117   < clt 11253  cle 11254  cmin 11449  0cn0 12477  cz 12563  ...cfz 13489  chash 14295  Word cword 14469   ++ cconcat 14525   prefix cpfx 14625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-1o 8470  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-fin 8947  df-card 9938  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-n0 12478  df-z 12564  df-uz 12828  df-fz 13490  df-fzo 13633  df-hash 14296  df-word 14470  df-concat 14526  df-substr 14596  df-pfx 14626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator