MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbi Structured version   Visualization version   GIF version

Theorem wwlksnextbi 28259
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 16-Apr-2021.) (Proof shortened by AV, 27-Oct-2022.)
Hypotheses
Ref Expression
wwlksnext.v 𝑉 = (Vtx‘𝐺)
wwlksnext.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbi (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnextbi
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 wwlksnext.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2wwlknp 28208 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
4 wwlksnred 28257 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
54ad2antrr 723 . . . . . . 7 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺)))
6 fveqeq2 6783 . . . . . . . . . . . . . . . 16 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
763ad2ant2 1133 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
87adantl 482 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
9 s1cl 14307 . . . . . . . . . . . . . . . . . . . . 21 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
109adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑆𝑉) → ⟨“𝑆”⟩ ∈ Word 𝑉)
1110anim1ci 616 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉))
12 ccatlen 14278 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1311, 12syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1413eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
15 s1len 14311 . . . . . . . . . . . . . . . . . . . 20 (♯‘⟨“𝑆”⟩) = 1
1615a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘⟨“𝑆”⟩) = 1)
1716oveq2d 7291 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑇) + 1))
1817eqeq1d 2740 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑇) + 1) = ((𝑁 + 1) + 1)))
19 lencl 14236 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈ ℕ0)
2019nn0cnd 12295 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈ ℂ)
2120adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘𝑇) ∈ ℂ)
22 peano2nn0 12273 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2322nn0cnd 12295 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
2423ad2antrr 723 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑁 + 1) ∈ ℂ)
25 1cnd 10970 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → 1 ∈ ℂ)
2621, 24, 25addcan2d 11179 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + 1) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1)))
2714, 18, 263bitrd 305 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1)))
28 oveq2 7283 . . . . . . . . . . . . . . . . . . 19 ((𝑁 + 1) = (♯‘𝑇) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩) prefix (♯‘𝑇)))
2928eqcoms 2746 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑇) = (𝑁 + 1) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩) prefix (♯‘𝑇)))
30 pfxccat1 14415 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (♯‘𝑇)) = 𝑇)
3111, 30syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (♯‘𝑇)) = 𝑇)
3229, 31sylan9eqr 2800 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇)
3332ex 413 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) = (𝑁 + 1) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
3427, 33sylbid 239 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
35343ad2antr1 1187 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
368, 35sylbid 239 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
3736imp 407 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇)
38 oveq1 7282 . . . . . . . . . . . . . . 15 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → (𝑊 prefix (𝑁 + 1)) = ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)))
3938eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ((𝑊 prefix (𝑁 + 1)) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
40393ad2ant2 1133 . . . . . . . . . . . . 13 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((𝑊 prefix (𝑁 + 1)) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
4140ad2antlr 724 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 prefix (𝑁 + 1)) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) prefix (𝑁 + 1)) = 𝑇))
4237, 41mpbird 256 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 prefix (𝑁 + 1)) = 𝑇)
4342eleq1d 2823 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))
4443biimpd 228 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
4544ex 413 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
4645com23 86 . . . . . . 7 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑊 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
475, 46syld 47 . . . . . 6 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
4847com13 88 . . . . 5 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
49483ad2ant2 1133 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
503, 49mpcom 38 . . 3 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
5150com12 32 . 2 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
521, 2wwlksnext 28258 . . . . . . . . . . 11 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
53 eleq1 2826 . . . . . . . . . . 11 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
5452, 53syl5ibrcom 246 . . . . . . . . . 10 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))
55543exp 1118 . . . . . . . . 9 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑆𝑉 → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
5655com23 86 . . . . . . . 8 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
5756com14 96 . . . . . . 7 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
5857imp 407 . . . . . 6 ((𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
59583adant1 1129 . . . . 5 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6059com12 32 . . . 4 (𝑆𝑉 → ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6160adantl 482 . . 3 ((𝑁 ∈ ℕ0𝑆𝑉) → ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6261imp 407 . 2 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6351, 62impbid 211 1 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {cpr 4563  cfv 6433  (class class class)co 7275  cc 10869  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  ..^cfzo 13382  chash 14044  Word cword 14217  lastSclsw 14265   ++ cconcat 14273  ⟨“cs1 14300   prefix cpfx 14383  Vtxcvtx 27366  Edgcedg 27417   WWalksN cwwlksn 28191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-lsw 14266  df-concat 14274  df-s1 14301  df-substr 14354  df-pfx 14384  df-wwlks 28195  df-wwlksn 28196
This theorem is referenced by:  wwlksnextwrd  28262
  Copyright terms: Public domain W3C validator