MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wwlksnextbi Structured version   Visualization version   GIF version

Theorem wwlksnextbi 27093
Description: Extension of a walk (as word) by adding an edge/vertex. (Contributed by Alexander van der Vekens, 5-Aug-2018.) (Revised by AV, 16-Apr-2021.)
Hypotheses
Ref Expression
wwlksnext.v 𝑉 = (Vtx‘𝐺)
wwlksnext.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
wwlksnextbi (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))

Proof of Theorem wwlksnextbi
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 wwlksnext.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 wwlksnext.e . . . . 5 𝐸 = (Edg‘𝐺)
31, 2wwlknp 27026 . . . 4 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸))
4 wwlksnred 27091 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
54ad2antrr 717 . . . . . . 7 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺)))
6 fveqeq2 6383 . . . . . . . . . . . . . . . 16 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
763ad2ant2 1164 . . . . . . . . . . . . . . 15 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
87adantl 473 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) ↔ (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
9 s1cl 13572 . . . . . . . . . . . . . . . . . . . . . 22 (𝑆𝑉 → ⟨“𝑆”⟩ ∈ Word 𝑉)
109adantl 473 . . . . . . . . . . . . . . . . . . . . 21 ((𝑁 ∈ ℕ0𝑆𝑉) → ⟨“𝑆”⟩ ∈ Word 𝑉)
1110anim2i 610 . . . . . . . . . . . . . . . . . . . 20 ((𝑇 ∈ Word 𝑉 ∧ (𝑁 ∈ ℕ0𝑆𝑉)) → (𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉))
1211ancoms 450 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉))
13 ccatlen 13545 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1412, 13syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)))
1514eqeq1d 2766 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1)))
16 s1len 13576 . . . . . . . . . . . . . . . . . . . 20 (♯‘⟨“𝑆”⟩) = 1
1716a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘⟨“𝑆”⟩) = 1)
1817oveq2d 6857 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((♯‘𝑇) + 1))
1918eqeq1d 2766 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + (♯‘⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ ((♯‘𝑇) + 1) = ((𝑁 + 1) + 1)))
20 lencl 13504 . . . . . . . . . . . . . . . . . . . 20 (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈ ℕ0)
2120nn0cnd 11599 . . . . . . . . . . . . . . . . . . 19 (𝑇 ∈ Word 𝑉 → (♯‘𝑇) ∈ ℂ)
2221adantl 473 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (♯‘𝑇) ∈ ℂ)
23 peano2nn0 11579 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
2423nn0cnd 11599 . . . . . . . . . . . . . . . . . . 19 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℂ)
2524ad2antrr 717 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (𝑁 + 1) ∈ ℂ)
26 1cnd 10287 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → 1 ∈ ℂ)
2722, 25, 26addcan2d 10493 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → (((♯‘𝑇) + 1) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1)))
2815, 19, 273bitrd 296 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) ↔ (♯‘𝑇) = (𝑁 + 1)))
29 opeq2 4559 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 + 1) = (♯‘𝑇) → ⟨0, (𝑁 + 1)⟩ = ⟨0, (♯‘𝑇)⟩)
3029eqcoms 2772 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝑇) = (𝑁 + 1) → ⟨0, (𝑁 + 1)⟩ = ⟨0, (♯‘𝑇)⟩)
3130oveq2d 6857 . . . . . . . . . . . . . . . . . 18 ((♯‘𝑇) = (𝑁 + 1) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (♯‘𝑇)⟩))
32 swrdccat1OLD 13658 . . . . . . . . . . . . . . . . . . 19 ((𝑇 ∈ Word 𝑉 ∧ ⟨“𝑆”⟩ ∈ Word 𝑉) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (♯‘𝑇)⟩) = 𝑇)
3312, 32syl 17 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (♯‘𝑇)⟩) = 𝑇)
3431, 33sylan9eqr 2820 . . . . . . . . . . . . . . . . 17 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) ∧ (♯‘𝑇) = (𝑁 + 1)) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇)
3534ex 401 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘𝑇) = (𝑁 + 1) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
3628, 35sylbid 231 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ 𝑇 ∈ Word 𝑉) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
37363ad2antr1 1239 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘(𝑇 ++ ⟨“𝑆”⟩)) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
388, 37sylbid 231 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
3938imp 395 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇)
40 oveq1 6848 . . . . . . . . . . . . . . 15 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) = ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩))
4140eqeq1d 2766 . . . . . . . . . . . . . 14 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
42413ad2ant2 1164 . . . . . . . . . . . . 13 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
4342ad2antlr 718 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑇 ↔ ((𝑇 ++ ⟨“𝑆”⟩) substr ⟨0, (𝑁 + 1)⟩) = 𝑇))
4439, 43mpbird 248 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → (𝑊 substr ⟨0, (𝑁 + 1)⟩) = 𝑇)
4544eleq1d 2828 . . . . . . . . . 10 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))
4645biimpd 220 . . . . . . . . 9 ((((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) ∧ (♯‘𝑊) = ((𝑁 + 1) + 1)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
4746ex 401 . . . . . . . 8 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
4847com23 86 . . . . . . 7 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → ((𝑊 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
495, 48syld 47 . . . . . 6 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → ((♯‘𝑊) = ((𝑁 + 1) + 1) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
5049com13 88 . . . . 5 ((♯‘𝑊) = ((𝑁 + 1) + 1) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
51503ad2ant2 1164 . . . 4 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = ((𝑁 + 1) + 1) ∧ ∀𝑖 ∈ (0..^(𝑁 + 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ 𝐸) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺))))
523, 51mpcom 38 . . 3 (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
5352com12 32 . 2 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) → 𝑇 ∈ (𝑁 WWalksN 𝐺)))
541, 2wwlksnext 27092 . . . . . . . . . . 11 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺))
55 eleq1 2831 . . . . . . . . . . 11 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ (𝑇 ++ ⟨“𝑆”⟩) ∈ ((𝑁 + 1) WWalksN 𝐺)))
5654, 55syl5ibrcom 238 . . . . . . . . . 10 ((𝑇 ∈ (𝑁 WWalksN 𝐺) ∧ 𝑆𝑉 ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))
57563exp 1148 . . . . . . . . 9 (𝑇 ∈ (𝑁 WWalksN 𝐺) → (𝑆𝑉 → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
5857com23 86 . . . . . . . 8 (𝑇 ∈ (𝑁 WWalksN 𝐺) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
5958com14 96 . . . . . . 7 (𝑊 = (𝑇 ++ ⟨“𝑆”⟩) → ({(lastS‘𝑇), 𝑆} ∈ 𝐸 → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))))
6059imp 395 . . . . . 6 ((𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
61603adant1 1160 . . . . 5 ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑆𝑉 → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6261com12 32 . . . 4 (𝑆𝑉 → ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6362adantl 473 . . 3 ((𝑁 ∈ ℕ0𝑆𝑉) → ((𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺))))
6463imp 395 . 2 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑇 ∈ (𝑁 WWalksN 𝐺) → 𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺)))
6553, 64impbid 203 1 (((𝑁 ∈ ℕ0𝑆𝑉) ∧ (𝑇 ∈ Word 𝑉𝑊 = (𝑇 ++ ⟨“𝑆”⟩) ∧ {(lastS‘𝑇), 𝑆} ∈ 𝐸)) → (𝑊 ∈ ((𝑁 + 1) WWalksN 𝐺) ↔ 𝑇 ∈ (𝑁 WWalksN 𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3054  {cpr 4335  cop 4339  cfv 6067  (class class class)co 6841  cc 10186  0cc0 10188  1c1 10189   + caddc 10191  0cn0 11537  ..^cfzo 12672  chash 13320  Word cword 13485  lastSclsw 13532   ++ cconcat 13540  ⟨“cs1 13565   substr csubstr 13615  Vtxcvtx 26164  Edgcedg 26215   WWalksN cwwlksn 27009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2349  ax-ext 2742  ax-rep 4929  ax-sep 4940  ax-nul 4948  ax-pow 5000  ax-pr 5061  ax-un 7146  ax-cnex 10244  ax-resscn 10245  ax-1cn 10246  ax-icn 10247  ax-addcl 10248  ax-addrcl 10249  ax-mulcl 10250  ax-mulrcl 10251  ax-mulcom 10252  ax-addass 10253  ax-mulass 10254  ax-distr 10255  ax-i2m1 10256  ax-1ne0 10257  ax-1rid 10258  ax-rnegex 10259  ax-rrecex 10260  ax-cnre 10261  ax-pre-lttri 10262  ax-pre-lttrn 10263  ax-pre-ltadd 10264  ax-pre-mulgt0 10265
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2564  df-eu 2581  df-clab 2751  df-cleq 2757  df-clel 2760  df-nfc 2895  df-ne 2937  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3351  df-sbc 3596  df-csb 3691  df-dif 3734  df-un 3736  df-in 3738  df-ss 3745  df-pss 3747  df-nul 4079  df-if 4243  df-pw 4316  df-sn 4334  df-pr 4336  df-tp 4338  df-op 4340  df-uni 4594  df-int 4633  df-iun 4677  df-br 4809  df-opab 4871  df-mpt 4888  df-tr 4911  df-id 5184  df-eprel 5189  df-po 5197  df-so 5198  df-fr 5235  df-we 5237  df-xp 5282  df-rel 5283  df-cnv 5284  df-co 5285  df-dm 5286  df-rn 5287  df-res 5288  df-ima 5289  df-pred 5864  df-ord 5910  df-on 5911  df-lim 5912  df-suc 5913  df-iota 6030  df-fun 6069  df-fn 6070  df-f 6071  df-f1 6072  df-fo 6073  df-f1o 6074  df-fv 6075  df-riota 6802  df-ov 6844  df-oprab 6845  df-mpt2 6846  df-om 7263  df-1st 7365  df-2nd 7366  df-wrecs 7609  df-recs 7671  df-rdg 7709  df-1o 7763  df-oadd 7767  df-er 7946  df-map 8061  df-pm 8062  df-en 8160  df-dom 8161  df-sdom 8162  df-fin 8163  df-card 9015  df-pnf 10329  df-mnf 10330  df-xr 10331  df-ltxr 10332  df-le 10333  df-sub 10521  df-neg 10522  df-nn 11274  df-n0 11538  df-z 11624  df-uz 11886  df-fz 12533  df-fzo 12673  df-hash 13321  df-word 13486  df-lsw 13533  df-concat 13541  df-s1 13566  df-substr 13616  df-wwlks 27013  df-wwlksn 27014
This theorem is referenced by:  wwlksnextwrd  27096
  Copyright terms: Public domain W3C validator