Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvconst | Structured version Visualization version GIF version |
Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.) |
Ref | Expression |
---|---|
dvconst | ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconst6g 6557 | . 2 ⊢ (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ) | |
2 | simpr2 1192 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → 𝑧 ∈ ℂ) | |
3 | fvconst2g 6960 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((ℂ × {𝐴})‘𝑧) = 𝐴) | |
4 | 2, 3 | syldan 594 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → ((ℂ × {𝐴})‘𝑧) = 𝐴) |
5 | fvconst2g 6960 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐴})‘𝑥) = 𝐴) | |
6 | 5 | 3ad2antr1 1185 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → ((ℂ × {𝐴})‘𝑥) = 𝐴) |
7 | 4, 6 | oveq12d 7173 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = (𝐴 − 𝐴)) |
8 | subid 10948 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) | |
9 | 8 | adantr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (𝐴 − 𝐴) = 0) |
10 | 7, 9 | eqtrd 2793 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = 0) |
11 | 10 | oveq1d 7170 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = (0 / (𝑧 − 𝑥))) |
12 | simpr1 1191 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → 𝑥 ∈ ℂ) | |
13 | 2, 12 | subcld 11040 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (𝑧 − 𝑥) ∈ ℂ) |
14 | simpr3 1193 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → 𝑧 ≠ 𝑥) | |
15 | 2, 12, 14 | subne0d 11049 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (𝑧 − 𝑥) ≠ 0) |
16 | 13, 15 | div0d 11458 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → (0 / (𝑧 − 𝑥)) = 0) |
17 | 11, 16 | eqtrd 2793 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧 ≠ 𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧 − 𝑥)) = 0) |
18 | 0cn 10676 | . 2 ⊢ 0 ∈ ℂ | |
19 | 1, 17, 18 | dvidlem 24619 | 1 ⊢ (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 {csn 4525 × cxp 5525 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 0cc0 10580 − cmin 10913 / cdiv 11340 D cdv 24567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-pm 8424 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fi 8913 df-sup 8944 df-inf 8945 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-q 12394 df-rp 12436 df-xneg 12553 df-xadd 12554 df-xmul 12555 df-icc 12791 df-fz 12945 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-plusg 16641 df-mulr 16642 df-starv 16643 df-tset 16647 df-ple 16648 df-ds 16650 df-unif 16651 df-rest 16759 df-topn 16760 df-topgen 16780 df-psmet 20163 df-xmet 20164 df-met 20165 df-bl 20166 df-mopn 20167 df-fbas 20168 df-fg 20169 df-cnfld 20172 df-top 21599 df-topon 21616 df-topsp 21638 df-bases 21651 df-cld 21724 df-ntr 21725 df-cls 21726 df-nei 21803 df-lp 21841 df-perf 21842 df-cn 21932 df-cnp 21933 df-haus 22020 df-fil 22551 df-fm 22643 df-flim 22644 df-flf 22645 df-xms 23027 df-ms 23028 df-cncf 23584 df-limc 24570 df-dv 24571 |
This theorem is referenced by: dvcmul 24648 dvcmulf 24649 dvexp2 24658 dvmptc 24662 dvef 24684 dvsconst 41435 binomcxplemnotnn0 41461 |
Copyright terms: Public domain | W3C validator |