Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvconst Structured version   Visualization version   GIF version

Theorem dvconst 24621
 Description: Derivative of a constant function. (Contributed by Mario Carneiro, 8-Aug-2014.) (Revised by Mario Carneiro, 9-Feb-2015.)
Assertion
Ref Expression
dvconst (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))

Proof of Theorem dvconst
Dummy variables 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fconst6g 6557 . 2 (𝐴 ∈ ℂ → (ℂ × {𝐴}):ℂ⟶ℂ)
2 simpr2 1192 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → 𝑧 ∈ ℂ)
3 fvconst2g 6960 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((ℂ × {𝐴})‘𝑧) = 𝐴)
42, 3syldan 594 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → ((ℂ × {𝐴})‘𝑧) = 𝐴)
5 fvconst2g 6960 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((ℂ × {𝐴})‘𝑥) = 𝐴)
653ad2antr1 1185 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → ((ℂ × {𝐴})‘𝑥) = 𝐴)
74, 6oveq12d 7173 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = (𝐴𝐴))
8 subid 10948 . . . . . 6 (𝐴 ∈ ℂ → (𝐴𝐴) = 0)
98adantr 484 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (𝐴𝐴) = 0)
107, 9eqtrd 2793 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) = 0)
1110oveq1d 7170 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧𝑥)) = (0 / (𝑧𝑥)))
12 simpr1 1191 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → 𝑥 ∈ ℂ)
132, 12subcld 11040 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (𝑧𝑥) ∈ ℂ)
14 simpr3 1193 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → 𝑧𝑥)
152, 12, 14subne0d 11049 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (𝑧𝑥) ≠ 0)
1613, 15div0d 11458 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → (0 / (𝑧𝑥)) = 0)
1711, 16eqtrd 2793 . 2 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑧𝑥)) → ((((ℂ × {𝐴})‘𝑧) − ((ℂ × {𝐴})‘𝑥)) / (𝑧𝑥)) = 0)
18 0cn 10676 . 2 0 ∈ ℂ
191, 17, 18dvidlem 24619 1 (𝐴 ∈ ℂ → (ℂ D (ℂ × {𝐴})) = (ℂ × {0}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111   ≠ wne 2951  {csn 4525   × cxp 5525  ‘cfv 6339  (class class class)co 7155  ℂcc 10578  0cc0 10580   − cmin 10913   / cdiv 11340   D cdv 24567 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464  ax-cnex 10636  ax-resscn 10637  ax-1cn 10638  ax-icn 10639  ax-addcl 10640  ax-addrcl 10641  ax-mulcl 10642  ax-mulrcl 10643  ax-mulcom 10644  ax-addass 10645  ax-mulass 10646  ax-distr 10647  ax-i2m1 10648  ax-1ne0 10649  ax-1rid 10650  ax-rnegex 10651  ax-rrecex 10652  ax-cnre 10653  ax-pre-lttri 10654  ax-pre-lttrn 10655  ax-pre-ltadd 10656  ax-pre-mulgt0 10657  ax-pre-sup 10658 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5036  df-opab 5098  df-mpt 5116  df-tr 5142  df-id 5433  df-eprel 5438  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6130  df-ord 6176  df-on 6177  df-lim 6178  df-suc 6179  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7585  df-1st 7698  df-2nd 7699  df-wrecs 7962  df-recs 8023  df-rdg 8061  df-1o 8117  df-er 8304  df-map 8423  df-pm 8424  df-en 8533  df-dom 8534  df-sdom 8535  df-fin 8536  df-fi 8913  df-sup 8944  df-inf 8945  df-pnf 10720  df-mnf 10721  df-xr 10722  df-ltxr 10723  df-le 10724  df-sub 10915  df-neg 10916  df-div 11341  df-nn 11680  df-2 11742  df-3 11743  df-4 11744  df-5 11745  df-6 11746  df-7 11747  df-8 11748  df-9 11749  df-n0 11940  df-z 12026  df-dec 12143  df-uz 12288  df-q 12394  df-rp 12436  df-xneg 12553  df-xadd 12554  df-xmul 12555  df-icc 12791  df-fz 12945  df-seq 13424  df-exp 13485  df-cj 14511  df-re 14512  df-im 14513  df-sqrt 14647  df-abs 14648  df-struct 16548  df-ndx 16549  df-slot 16550  df-base 16552  df-plusg 16641  df-mulr 16642  df-starv 16643  df-tset 16647  df-ple 16648  df-ds 16650  df-unif 16651  df-rest 16759  df-topn 16760  df-topgen 16780  df-psmet 20163  df-xmet 20164  df-met 20165  df-bl 20166  df-mopn 20167  df-fbas 20168  df-fg 20169  df-cnfld 20172  df-top 21599  df-topon 21616  df-topsp 21638  df-bases 21651  df-cld 21724  df-ntr 21725  df-cls 21726  df-nei 21803  df-lp 21841  df-perf 21842  df-cn 21932  df-cnp 21933  df-haus 22020  df-fil 22551  df-fm 22643  df-flim 22644  df-flf 22645  df-xms 23027  df-ms 23028  df-cncf 23584  df-limc 24570  df-dv 24571 This theorem is referenced by:  dvcmul  24648  dvcmulf  24649  dvexp2  24658  dvmptc  24662  dvef  24684  dvsconst  41435  binomcxplemnotnn0  41461
 Copyright terms: Public domain W3C validator