Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaplusgv Structured version   Visualization version   GIF version

Theorem dvaplusgv 40709
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
dvafplus.h 𝐻 = (LHyp‘𝐾)
dvafplus.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafplus.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafplus.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafplus.f 𝐹 = (Scalar‘𝑈)
dvafplus.p + = (+g𝐹)
Assertion
Ref Expression
dvaplusgv (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))

Proof of Theorem dvaplusgv
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dvafplus.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvafplus.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafplus.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvafplus.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 dvafplus.f . . . . 5 𝐹 = (Scalar‘𝑈)
6 dvafplus.p . . . . 5 + = (+g𝐹)
71, 2, 3, 4, 5, 6dvaplusg 40708 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → (𝑅 + 𝑆) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))))
87fveq1d 6903 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
983adantr3 1168 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
10 simpr3 1193 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → 𝐺𝑇)
11 fveq2 6901 . . . . 5 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
12 fveq2 6901 . . . . 5 (𝑓 = 𝐺 → (𝑆𝑓) = (𝑆𝐺))
1311, 12coeq12d 5871 . . . 4 (𝑓 = 𝐺 → ((𝑅𝑓) ∘ (𝑆𝑓)) = ((𝑅𝐺) ∘ (𝑆𝐺)))
14 eqid 2726 . . . 4 (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))
15 fvex 6914 . . . . 5 (𝑅𝐺) ∈ V
16 fvex 6914 . . . . 5 (𝑆𝐺) ∈ V
1715, 16coex 7943 . . . 4 ((𝑅𝐺) ∘ (𝑆𝐺)) ∈ V
1813, 14, 17fvmpt 7009 . . 3 (𝐺𝑇 → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
1910, 18syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
209, 19eqtrd 2766 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  cmpt 5236  ccom 5686  cfv 6554  (class class class)co 7424  +gcplusg 17266  Scalarcsca 17269  LHypclh 39683  LTrncltrn 39800  TEndoctendo 40451  DVecAcdveca 40701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-tp 4638  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-struct 17149  df-slot 17184  df-ndx 17196  df-base 17214  df-plusg 17279  df-mulr 17280  df-sca 17282  df-vsca 17283  df-edring 40456  df-dveca 40702
This theorem is referenced by:  dvalveclem  40724
  Copyright terms: Public domain W3C validator