| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvaplusgv | Structured version Visualization version GIF version | ||
| Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| dvafplus.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvafplus.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvafplus.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvafplus.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvafplus.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| dvafplus.p | ⊢ + = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| dvaplusgv | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvafplus.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvafplus.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvafplus.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvafplus.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 5 | dvafplus.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 6 | dvafplus.p | . . . . 5 ⊢ + = (+g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvaplusg 41054 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 + 𝑆) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))) |
| 8 | 7 | fveq1d 6824 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 9 | 8 | 3adantr3 1172 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 10 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
| 11 | fveq2 6822 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
| 12 | fveq2 6822 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑆‘𝑓) = (𝑆‘𝐺)) | |
| 13 | 11, 12 | coeq12d 5804 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑅‘𝑓) ∘ (𝑆‘𝑓)) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 14 | eqid 2731 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) | |
| 15 | fvex 6835 | . . . . 5 ⊢ (𝑅‘𝐺) ∈ V | |
| 16 | fvex 6835 | . . . . 5 ⊢ (𝑆‘𝐺) ∈ V | |
| 17 | 15, 16 | coex 7860 | . . . 4 ⊢ ((𝑅‘𝐺) ∘ (𝑆‘𝐺)) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6929 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 19 | 10, 18 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 20 | 9, 19 | eqtrd 2766 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ↦ cmpt 5172 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 +gcplusg 17161 Scalarcsca 17164 LHypclh 40029 LTrncltrn 40146 TEndoctendo 40797 DVecAcdveca 41047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-edring 40802 df-dveca 41048 |
| This theorem is referenced by: dvalveclem 41070 |
| Copyright terms: Public domain | W3C validator |