Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvaplusgv | Structured version Visualization version GIF version |
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
Ref | Expression |
---|---|
dvafplus.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvafplus.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
dvafplus.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
dvafplus.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvafplus.f | ⊢ 𝐹 = (Scalar‘𝑈) |
dvafplus.p | ⊢ + = (+g‘𝐹) |
Ref | Expression |
---|---|
dvaplusgv | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvafplus.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvafplus.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | dvafplus.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | dvafplus.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
5 | dvafplus.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
6 | dvafplus.p | . . . . 5 ⊢ + = (+g‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | dvaplusg 39002 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 + 𝑆) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))) |
8 | 7 | fveq1d 6770 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
9 | 8 | 3adantr3 1169 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
10 | simpr3 1194 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
11 | fveq2 6768 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
12 | fveq2 6768 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑆‘𝑓) = (𝑆‘𝐺)) | |
13 | 11, 12 | coeq12d 5770 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑅‘𝑓) ∘ (𝑆‘𝑓)) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
14 | eqid 2739 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) | |
15 | fvex 6781 | . . . . 5 ⊢ (𝑅‘𝐺) ∈ V | |
16 | fvex 6781 | . . . . 5 ⊢ (𝑆‘𝐺) ∈ V | |
17 | 15, 16 | coex 7764 | . . . 4 ⊢ ((𝑅‘𝐺) ∘ (𝑆‘𝐺)) ∈ V |
18 | 13, 14, 17 | fvmpt 6869 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
19 | 10, 18 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
20 | 9, 19 | eqtrd 2779 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ↦ cmpt 5161 ∘ ccom 5592 ‘cfv 6430 (class class class)co 7268 +gcplusg 16943 Scalarcsca 16946 LHypclh 37977 LTrncltrn 38094 TEndoctendo 38745 DVecAcdveca 38995 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-struct 16829 df-slot 16864 df-ndx 16876 df-base 16894 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-edring 38750 df-dveca 38996 |
This theorem is referenced by: dvalveclem 39018 |
Copyright terms: Public domain | W3C validator |