| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvaplusgv | Structured version Visualization version GIF version | ||
| Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| dvafplus.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvafplus.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvafplus.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvafplus.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvafplus.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| dvafplus.p | ⊢ + = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| dvaplusgv | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvafplus.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvafplus.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvafplus.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvafplus.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 5 | dvafplus.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 6 | dvafplus.p | . . . . 5 ⊢ + = (+g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvaplusg 40986 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 + 𝑆) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))) |
| 8 | 7 | fveq1d 6888 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 9 | 8 | 3adantr3 1171 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 10 | simpr3 1196 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
| 11 | fveq2 6886 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
| 12 | fveq2 6886 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑆‘𝑓) = (𝑆‘𝐺)) | |
| 13 | 11, 12 | coeq12d 5855 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑅‘𝑓) ∘ (𝑆‘𝑓)) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 14 | eqid 2734 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) | |
| 15 | fvex 6899 | . . . . 5 ⊢ (𝑅‘𝐺) ∈ V | |
| 16 | fvex 6899 | . . . . 5 ⊢ (𝑆‘𝐺) ∈ V | |
| 17 | 15, 16 | coex 7934 | . . . 4 ⊢ ((𝑅‘𝐺) ∘ (𝑆‘𝐺)) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6996 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 19 | 10, 18 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 20 | 9, 19 | eqtrd 2769 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5205 ∘ ccom 5669 ‘cfv 6541 (class class class)co 7413 +gcplusg 17274 Scalarcsca 17277 LHypclh 39961 LTrncltrn 40078 TEndoctendo 40729 DVecAcdveca 40979 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-1o 8488 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-fin 8971 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-n0 12510 df-z 12597 df-uz 12861 df-fz 13530 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17287 df-mulr 17288 df-sca 17290 df-vsca 17291 df-edring 40734 df-dveca 40980 |
| This theorem is referenced by: dvalveclem 41002 |
| Copyright terms: Public domain | W3C validator |