Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvaplusgv Structured version   Visualization version   GIF version

Theorem dvaplusgv 40954
Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
dvafplus.h 𝐻 = (LHyp‘𝐾)
dvafplus.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dvafplus.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dvafplus.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvafplus.f 𝐹 = (Scalar‘𝑈)
dvafplus.p + = (+g𝐹)
Assertion
Ref Expression
dvaplusgv (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))

Proof of Theorem dvaplusgv
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dvafplus.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvafplus.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 dvafplus.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 dvafplus.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
5 dvafplus.f . . . . 5 𝐹 = (Scalar‘𝑈)
6 dvafplus.p . . . . 5 + = (+g𝐹)
71, 2, 3, 4, 5, 6dvaplusg 40953 . . . 4 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → (𝑅 + 𝑆) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))))
87fveq1d 6903 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
983adantr3 1169 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺))
10 simpr3 1194 . . 3 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → 𝐺𝑇)
11 fveq2 6901 . . . . 5 (𝑓 = 𝐺 → (𝑅𝑓) = (𝑅𝐺))
12 fveq2 6901 . . . . 5 (𝑓 = 𝐺 → (𝑆𝑓) = (𝑆𝐺))
1311, 12coeq12d 5872 . . . 4 (𝑓 = 𝐺 → ((𝑅𝑓) ∘ (𝑆𝑓)) = ((𝑅𝐺) ∘ (𝑆𝐺)))
14 eqid 2733 . . . 4 (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓))) = (𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))
15 fvex 6914 . . . . 5 (𝑅𝐺) ∈ V
16 fvex 6914 . . . . 5 (𝑆𝐺) ∈ V
1715, 16coex 7947 . . . 4 ((𝑅𝐺) ∘ (𝑆𝐺)) ∈ V
1813, 14, 17fvmpt 7010 . . 3 (𝐺𝑇 → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
1910, 18syl 17 . 2 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑓𝑇 ↦ ((𝑅𝑓) ∘ (𝑆𝑓)))‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
209, 19eqtrd 2773 1 (((𝐾𝑉𝑊𝐻) ∧ (𝑅𝐸𝑆𝐸𝐺𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅𝐺) ∘ (𝑆𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1535  wcel 2104  cmpt 5232  ccom 5687  cfv 6558  (class class class)co 7425  +gcplusg 17287  Scalarcsca 17290  LHypclh 39928  LTrncltrn 40045  TEndoctendo 40696  DVecAcdveca 40946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1963  ax-7 2003  ax-8 2106  ax-9 2114  ax-10 2137  ax-11 2153  ax-12 2173  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5366  ax-pr 5430  ax-un 7747  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1538  df-fal 1548  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2536  df-eu 2565  df-clab 2711  df-cleq 2725  df-clel 2812  df-nfc 2888  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-reu 3377  df-rab 3433  df-v 3479  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4915  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5635  df-we 5637  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-pred 6317  df-ord 6383  df-on 6384  df-lim 6385  df-suc 6386  df-iota 6510  df-fun 6560  df-fn 6561  df-f 6562  df-f1 6563  df-fo 6564  df-f1o 6565  df-fv 6566  df-riota 7381  df-ov 7428  df-oprab 7429  df-mpo 7430  df-om 7881  df-1st 8007  df-2nd 8008  df-frecs 8299  df-wrecs 8330  df-recs 8404  df-rdg 8443  df-1o 8499  df-er 8738  df-en 8979  df-dom 8980  df-sdom 8981  df-fin 8982  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11485  df-neg 11486  df-nn 12258  df-2 12320  df-3 12321  df-4 12322  df-5 12323  df-6 12324  df-n0 12518  df-z 12605  df-uz 12870  df-fz 13538  df-struct 17170  df-slot 17205  df-ndx 17217  df-base 17235  df-plusg 17300  df-mulr 17301  df-sca 17303  df-vsca 17304  df-edring 40701  df-dveca 40947
This theorem is referenced by:  dvalveclem  40969
  Copyright terms: Public domain W3C validator