| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvaplusgv | Structured version Visualization version GIF version | ||
| Description: Ring addition operation for the constructed partial vector space A. (Contributed by NM, 11-Oct-2013.) |
| Ref | Expression |
|---|---|
| dvafplus.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvafplus.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| dvafplus.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| dvafplus.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvafplus.f | ⊢ 𝐹 = (Scalar‘𝑈) |
| dvafplus.p | ⊢ + = (+g‘𝐹) |
| Ref | Expression |
|---|---|
| dvaplusgv | ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvafplus.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvafplus.t | . . . . 5 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | dvafplus.e | . . . . 5 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | dvafplus.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 5 | dvafplus.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑈) | |
| 6 | dvafplus.p | . . . . 5 ⊢ + = (+g‘𝐹) | |
| 7 | 1, 2, 3, 4, 5, 6 | dvaplusg 40998 | . . . 4 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → (𝑅 + 𝑆) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))) |
| 8 | 7 | fveq1d 6862 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 9 | 8 | 3adantr3 1172 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺)) |
| 10 | simpr3 1197 | . . 3 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → 𝐺 ∈ 𝑇) | |
| 11 | fveq2 6860 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑅‘𝑓) = (𝑅‘𝐺)) | |
| 12 | fveq2 6860 | . . . . 5 ⊢ (𝑓 = 𝐺 → (𝑆‘𝑓) = (𝑆‘𝐺)) | |
| 13 | 11, 12 | coeq12d 5830 | . . . 4 ⊢ (𝑓 = 𝐺 → ((𝑅‘𝑓) ∘ (𝑆‘𝑓)) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 14 | eqid 2730 | . . . 4 ⊢ (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) = (𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓))) | |
| 15 | fvex 6873 | . . . . 5 ⊢ (𝑅‘𝐺) ∈ V | |
| 16 | fvex 6873 | . . . . 5 ⊢ (𝑆‘𝐺) ∈ V | |
| 17 | 15, 16 | coex 7908 | . . . 4 ⊢ ((𝑅‘𝐺) ∘ (𝑆‘𝐺)) ∈ V |
| 18 | 13, 14, 17 | fvmpt 6970 | . . 3 ⊢ (𝐺 ∈ 𝑇 → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 19 | 10, 18 | syl 17 | . 2 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑓 ∈ 𝑇 ↦ ((𝑅‘𝑓) ∘ (𝑆‘𝑓)))‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| 20 | 9, 19 | eqtrd 2765 | 1 ⊢ (((𝐾 ∈ 𝑉 ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐸 ∧ 𝑆 ∈ 𝐸 ∧ 𝐺 ∈ 𝑇)) → ((𝑅 + 𝑆)‘𝐺) = ((𝑅‘𝐺) ∘ (𝑆‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5190 ∘ ccom 5644 ‘cfv 6513 (class class class)co 7389 +gcplusg 17226 Scalarcsca 17229 LHypclh 39973 LTrncltrn 40090 TEndoctendo 40741 DVecAcdveca 40991 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17186 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-edring 40746 df-dveca 40992 |
| This theorem is referenced by: dvalveclem 41014 |
| Copyright terms: Public domain | W3C validator |