Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngplus2 Structured version   Visualization version   GIF version

Theorem erngplus2 39127
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.)
Hypotheses
Ref Expression
erngset.h 𝐻 = (LHyp‘𝐾)
erngset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d 𝐷 = ((EDRing‘𝐾)‘𝑊)
erng.p + = (+g𝐷)
Assertion
Ref Expression
erngplus2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Proof of Theorem erngplus2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erngset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d . . . 4 𝐷 = ((EDRing‘𝐾)‘𝑊)
5 erng.p . . . 4 + = (+g𝐷)
61, 2, 3, 4, 5erngplus 39126 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
763adantr3 1171 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
8 fveq2 6837 . . . 4 (𝑓 = 𝐹 → (𝑈𝑓) = (𝑈𝐹))
9 fveq2 6837 . . . 4 (𝑓 = 𝐹 → (𝑉𝑓) = (𝑉𝐹))
108, 9coeq12d 5816 . . 3 (𝑓 = 𝐹 → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
1110adantl 483 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
12 simpr3 1196 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
13 fvex 6850 . . . 4 (𝑈𝐹) ∈ V
14 fvex 6850 . . . 4 (𝑉𝐹) ∈ V
1513, 14coex 7857 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1615a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
177, 11, 12, 16fvmptd 6950 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1541  wcel 2106  Vcvv 3443  cmpt 5186  ccom 5634  cfv 6491  (class class class)co 7349  +gcplusg 17067  HLchlt 37672  LHypclh 38307  LTrncltrn 38424  TEndoctendo 39075  EDRingcedring 39076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7662  ax-cnex 11040  ax-resscn 11041  ax-1cn 11042  ax-icn 11043  ax-addcl 11044  ax-addrcl 11045  ax-mulcl 11046  ax-mulrcl 11047  ax-mulcom 11048  ax-addass 11049  ax-mulass 11050  ax-distr 11051  ax-i2m1 11052  ax-1ne0 11053  ax-1rid 11054  ax-rnegex 11055  ax-rrecex 11056  ax-cnre 11057  ax-pre-lttri 11058  ax-pre-lttrn 11059  ax-pre-ltadd 11060  ax-pre-mulgt0 11061
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-tp 4589  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5528  df-eprel 5534  df-po 5542  df-so 5543  df-fr 5585  df-we 5587  df-xp 5636  df-rel 5637  df-cnv 5638  df-co 5639  df-dm 5640  df-rn 5641  df-res 5642  df-ima 5643  df-pred 6249  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6443  df-fun 6493  df-fn 6494  df-f 6495  df-f1 6496  df-fo 6497  df-f1o 6498  df-fv 6499  df-riota 7305  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7793  df-1st 7911  df-2nd 7912  df-frecs 8179  df-wrecs 8210  df-recs 8284  df-rdg 8323  df-1o 8379  df-er 8581  df-en 8817  df-dom 8818  df-sdom 8819  df-fin 8820  df-pnf 11124  df-mnf 11125  df-xr 11126  df-ltxr 11127  df-le 11128  df-sub 11320  df-neg 11321  df-nn 12087  df-2 12149  df-3 12150  df-n0 12347  df-z 12433  df-uz 12696  df-fz 13353  df-struct 16953  df-slot 16988  df-ndx 17000  df-base 17018  df-plusg 17080  df-mulr 17081  df-edring 39080
This theorem is referenced by:  dvhlveclem  39431
  Copyright terms: Public domain W3C validator