Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngplus2 | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
erngset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng.p | ⊢ + = (+g‘𝐷) |
Ref | Expression |
---|---|
erngplus2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | erng.p | . . . 4 ⊢ + = (+g‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngplus 38440 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
7 | 6 | 3adantr3 1172 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
8 | fveq2 6674 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑈‘𝑓) = (𝑈‘𝐹)) | |
9 | fveq2 6674 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑉‘𝑓) = (𝑉‘𝐹)) | |
10 | 8, 9 | coeq12d 5707 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
11 | 10 | adantl 485 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
12 | simpr3 1197 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
13 | fvex 6687 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
14 | fvex 6687 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
15 | 13, 14 | coex 7661 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
17 | 7, 11, 12, 16 | fvmptd 6782 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ↦ cmpt 5110 ∘ ccom 5529 ‘cfv 6339 (class class class)co 7170 +gcplusg 16668 HLchlt 36987 LHypclh 37621 LTrncltrn 37738 TEndoctendo 38389 EDRingcedring 38390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-fz 12982 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-plusg 16681 df-mulr 16682 df-edring 38394 |
This theorem is referenced by: dvhlveclem 38745 |
Copyright terms: Public domain | W3C validator |