Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngplus2 | Structured version Visualization version GIF version |
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) |
Ref | Expression |
---|---|
erngset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
erngset.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
erngset.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
erngset.d | ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) |
erng.p | ⊢ + = (+g‘𝐷) |
Ref | Expression |
---|---|
erngplus2 | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | erngset.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | erngset.t | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | erngset.e | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | erngset.d | . . . 4 ⊢ 𝐷 = ((EDRing‘𝐾)‘𝑊) | |
5 | erng.p | . . . 4 ⊢ + = (+g‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngplus 39126 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
7 | 6 | 3adantr3 1171 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → (𝑈 + 𝑉) = (𝑓 ∈ 𝑇 ↦ ((𝑈‘𝑓) ∘ (𝑉‘𝑓)))) |
8 | fveq2 6837 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑈‘𝑓) = (𝑈‘𝐹)) | |
9 | fveq2 6837 | . . . 4 ⊢ (𝑓 = 𝐹 → (𝑉‘𝑓) = (𝑉‘𝐹)) | |
10 | 8, 9 | coeq12d 5816 | . . 3 ⊢ (𝑓 = 𝐹 → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
11 | 10 | adantl 483 | . 2 ⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈‘𝑓) ∘ (𝑉‘𝑓)) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
12 | simpr3 1196 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → 𝐹 ∈ 𝑇) | |
13 | fvex 6850 | . . . 4 ⊢ (𝑈‘𝐹) ∈ V | |
14 | fvex 6850 | . . . 4 ⊢ (𝑉‘𝐹) ∈ V | |
15 | 13, 14 | coex 7857 | . . 3 ⊢ ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈‘𝐹) ∘ (𝑉‘𝐹)) ∈ V) |
17 | 7, 11, 12, 16 | fvmptd 6950 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑈 ∈ 𝐸 ∧ 𝑉 ∈ 𝐸 ∧ 𝐹 ∈ 𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈‘𝐹) ∘ (𝑉‘𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 Vcvv 3443 ↦ cmpt 5186 ∘ ccom 5634 ‘cfv 6491 (class class class)co 7349 +gcplusg 17067 HLchlt 37672 LHypclh 38307 LTrncltrn 38424 TEndoctendo 39075 EDRingcedring 39076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 ax-cnex 11040 ax-resscn 11041 ax-1cn 11042 ax-icn 11043 ax-addcl 11044 ax-addrcl 11045 ax-mulcl 11046 ax-mulrcl 11047 ax-mulcom 11048 ax-addass 11049 ax-mulass 11050 ax-distr 11051 ax-i2m1 11052 ax-1ne0 11053 ax-1rid 11054 ax-rnegex 11055 ax-rrecex 11056 ax-cnre 11057 ax-pre-lttri 11058 ax-pre-lttrn 11059 ax-pre-ltadd 11060 ax-pre-mulgt0 11061 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-tp 4589 df-op 4591 df-uni 4864 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-pred 6249 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-riota 7305 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-frecs 8179 df-wrecs 8210 df-recs 8284 df-rdg 8323 df-1o 8379 df-er 8581 df-en 8817 df-dom 8818 df-sdom 8819 df-fin 8820 df-pnf 11124 df-mnf 11125 df-xr 11126 df-ltxr 11127 df-le 11128 df-sub 11320 df-neg 11321 df-nn 12087 df-2 12149 df-3 12150 df-n0 12347 df-z 12433 df-uz 12696 df-fz 13353 df-struct 16953 df-slot 16988 df-ndx 17000 df-base 17018 df-plusg 17080 df-mulr 17081 df-edring 39080 |
This theorem is referenced by: dvhlveclem 39431 |
Copyright terms: Public domain | W3C validator |