Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngplus2-rN Structured version   Visualization version   GIF version

Theorem erngplus2-rN 40748
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
erng.p-r + = (+g𝐷)
Assertion
Ref Expression
erngplus2-rN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Proof of Theorem erngplus2-rN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erngset.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 erng.p-r . . . 4 + = (+g𝐷)
61, 2, 3, 4, 5erngplus-rN 40747 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
763adantr3 1171 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
8 fveq2 6885 . . . 4 (𝑓 = 𝐹 → (𝑈𝑓) = (𝑈𝐹))
9 fveq2 6885 . . . 4 (𝑓 = 𝐹 → (𝑉𝑓) = (𝑉𝐹))
108, 9coeq12d 5855 . . 3 (𝑓 = 𝐹 → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
1110adantl 481 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
12 simpr3 1196 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
13 fvex 6898 . . . 4 (𝑈𝐹) ∈ V
14 fvex 6898 . . . 4 (𝑉𝐹) ∈ V
1513, 14coex 7933 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1615a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
177, 11, 12, 16fvmptd 7002 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  Vcvv 3463  cmpt 5205  ccom 5669  cfv 6540  (class class class)co 7412  +gcplusg 17272  HLchlt 39285  LHypclh 39920  LTrncltrn 40037  TEndoctendo 40688  EDRingRcedring-rN 40690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7736  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7369  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8726  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11475  df-neg 11476  df-nn 12248  df-2 12310  df-3 12311  df-n0 12509  df-z 12596  df-uz 12860  df-fz 13529  df-struct 17165  df-slot 17200  df-ndx 17212  df-base 17229  df-plusg 17285  df-mulr 17286  df-edring-rN 40692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator