Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erngplus2-rN Structured version   Visualization version   GIF version

Theorem erngplus2-rN 38834
Description: Ring addition operation. (Contributed by NM, 10-Jun-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
erngset.h-r 𝐻 = (LHyp‘𝐾)
erngset.t-r 𝑇 = ((LTrn‘𝐾)‘𝑊)
erngset.e-r 𝐸 = ((TEndo‘𝐾)‘𝑊)
erngset.d-r 𝐷 = ((EDRingR𝐾)‘𝑊)
erng.p-r + = (+g𝐷)
Assertion
Ref Expression
erngplus2-rN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))

Proof of Theorem erngplus2-rN
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 erngset.h-r . . . 4 𝐻 = (LHyp‘𝐾)
2 erngset.t-r . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 erngset.e-r . . . 4 𝐸 = ((TEndo‘𝐾)‘𝑊)
4 erngset.d-r . . . 4 𝐷 = ((EDRingR𝐾)‘𝑊)
5 erng.p-r . . . 4 + = (+g𝐷)
61, 2, 3, 4, 5erngplus-rN 38833 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
763adantr3 1170 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → (𝑈 + 𝑉) = (𝑓𝑇 ↦ ((𝑈𝑓) ∘ (𝑉𝑓))))
8 fveq2 6766 . . . 4 (𝑓 = 𝐹 → (𝑈𝑓) = (𝑈𝐹))
9 fveq2 6766 . . . 4 (𝑓 = 𝐹 → (𝑉𝑓) = (𝑉𝐹))
108, 9coeq12d 5766 . . 3 (𝑓 = 𝐹 → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
1110adantl 482 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) ∧ 𝑓 = 𝐹) → ((𝑈𝑓) ∘ (𝑉𝑓)) = ((𝑈𝐹) ∘ (𝑉𝐹)))
12 simpr3 1195 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → 𝐹𝑇)
13 fvex 6779 . . . 4 (𝑈𝐹) ∈ V
14 fvex 6779 . . . 4 (𝑉𝐹) ∈ V
1513, 14coex 7767 . . 3 ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V
1615a1i 11 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈𝐹) ∘ (𝑉𝐹)) ∈ V)
177, 11, 12, 16fvmptd 6874 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸𝐹𝑇)) → ((𝑈 + 𝑉)‘𝐹) = ((𝑈𝐹) ∘ (𝑉𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3429  cmpt 5156  ccom 5588  cfv 6426  (class class class)co 7267  +gcplusg 16972  HLchlt 37372  LHypclh 38006  LTrncltrn 38123  TEndoctendo 38774  EDRingRcedring-rN 38776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-n0 12244  df-z 12330  df-uz 12593  df-fz 13250  df-struct 16858  df-slot 16893  df-ndx 16905  df-base 16923  df-plusg 16985  df-mulr 16986  df-edring-rN 38778
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator