MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  efmnd2hash Structured version   Visualization version   GIF version

Theorem efmnd2hash 18768
Description: The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.)
Hypotheses
Ref Expression
efmnd1bas.1 𝐺 = (EndoFMnd‘𝐴)
efmnd1bas.2 𝐵 = (Base‘𝐺)
efmnd2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
efmnd2hash ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 4)

Proof of Theorem efmnd2hash
StepHypRef Expression
1 efmnd2bas.0 . . . 4 𝐴 = {𝐼, 𝐽}
2 prfi 9213 . . . 4 {𝐼, 𝐽} ∈ Fin
31, 2eqeltri 2824 . . 3 𝐴 ∈ Fin
4 efmnd1bas.1 . . . 4 𝐺 = (EndoFMnd‘𝐴)
5 efmnd1bas.2 . . . 4 𝐵 = (Base‘𝐺)
64, 5efmndhash 18750 . . 3 (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴)))
73, 6ax-mp 5 . 2 (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴))
81fveq2i 6825 . . . . 5 (♯‘𝐴) = (♯‘{𝐼, 𝐽})
9 elex 3457 . . . . . . 7 (𝐼𝑉𝐼 ∈ V)
10 elex 3457 . . . . . . 7 (𝐽𝑊𝐽 ∈ V)
11 id 22 . . . . . . 7 (𝐼𝐽𝐼𝐽)
129, 10, 113anim123i 1151 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽))
13 hashprb 14304 . . . . . 6 ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2)
1412, 13sylib 218 . . . . 5 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘{𝐼, 𝐽}) = 2)
158, 14eqtrid 2776 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐴) = 2)
1615, 15oveq12d 7367 . . 3 ((𝐼𝑉𝐽𝑊𝐼𝐽) → ((♯‘𝐴)↑(♯‘𝐴)) = (2↑2))
17 sq2 14104 . . 3 (2↑2) = 4
1816, 17eqtrdi 2780 . 2 ((𝐼𝑉𝐽𝑊𝐼𝐽) → ((♯‘𝐴)↑(♯‘𝐴)) = 4)
197, 18eqtrid 2776 1 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 4)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3436  {cpr 4579  cfv 6482  (class class class)co 7349  Fincfn 8872  2c2 12183  4c4 12185  cexp 13968  chash 14237  Basecbs 17120  EndoFMndcefmnd 18742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-dju 9797  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-seq 13909  df-exp 13969  df-hash 14238  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-tset 17180  df-efmnd 18743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator