![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efmnd2hash | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
efmnd1bas.1 | β’ πΊ = (EndoFMndβπ΄) |
efmnd1bas.2 | β’ π΅ = (BaseβπΊ) |
efmnd2bas.0 | β’ π΄ = {πΌ, π½} |
Ref | Expression |
---|---|
efmnd2hash | β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β (β―βπ΅) = 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmnd2bas.0 | . . . 4 β’ π΄ = {πΌ, π½} | |
2 | prfi 9318 | . . . 4 β’ {πΌ, π½} β Fin | |
3 | 1, 2 | eqeltri 2829 | . . 3 β’ π΄ β Fin |
4 | efmnd1bas.1 | . . . 4 β’ πΊ = (EndoFMndβπ΄) | |
5 | efmnd1bas.2 | . . . 4 β’ π΅ = (BaseβπΊ) | |
6 | 4, 5 | efmndhash 18753 | . . 3 β’ (π΄ β Fin β (β―βπ΅) = ((β―βπ΄)β(β―βπ΄))) |
7 | 3, 6 | ax-mp 5 | . 2 β’ (β―βπ΅) = ((β―βπ΄)β(β―βπ΄)) |
8 | 1 | fveq2i 6891 | . . . . 5 β’ (β―βπ΄) = (β―β{πΌ, π½}) |
9 | elex 3492 | . . . . . . 7 β’ (πΌ β π β πΌ β V) | |
10 | elex 3492 | . . . . . . 7 β’ (π½ β π β π½ β V) | |
11 | id 22 | . . . . . . 7 β’ (πΌ β π½ β πΌ β π½) | |
12 | 9, 10, 11 | 3anim123i 1151 | . . . . . 6 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β (πΌ β V β§ π½ β V β§ πΌ β π½)) |
13 | hashprb 14353 | . . . . . 6 β’ ((πΌ β V β§ π½ β V β§ πΌ β π½) β (β―β{πΌ, π½}) = 2) | |
14 | 12, 13 | sylib 217 | . . . . 5 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β (β―β{πΌ, π½}) = 2) |
15 | 8, 14 | eqtrid 2784 | . . . 4 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β (β―βπ΄) = 2) |
16 | 15, 15 | oveq12d 7423 | . . 3 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β ((β―βπ΄)β(β―βπ΄)) = (2β2)) |
17 | sq2 14157 | . . 3 β’ (2β2) = 4 | |
18 | 16, 17 | eqtrdi 2788 | . 2 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β ((β―βπ΄)β(β―βπ΄)) = 4) |
19 | 7, 18 | eqtrid 2784 | 1 β’ ((πΌ β π β§ π½ β π β§ πΌ β π½) β (β―βπ΅) = 4) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 {cpr 4629 βcfv 6540 (class class class)co 7405 Fincfn 8935 2c2 12263 4c4 12265 βcexp 14023 β―chash 14286 Basecbs 17140 EndoFMndcefmnd 18745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-seq 13963 df-exp 14024 df-hash 14287 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-tset 17212 df-efmnd 18746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |