Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efmnd2hash | Structured version Visualization version GIF version |
Description: The monoid of endofunctions on a (proper) pair has cardinality 4. (Contributed by AV, 18-Feb-2024.) |
Ref | Expression |
---|---|
efmnd1bas.1 | ⊢ 𝐺 = (EndoFMnd‘𝐴) |
efmnd1bas.2 | ⊢ 𝐵 = (Base‘𝐺) |
efmnd2bas.0 | ⊢ 𝐴 = {𝐼, 𝐽} |
Ref | Expression |
---|---|
efmnd2hash | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 4) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efmnd2bas.0 | . . . 4 ⊢ 𝐴 = {𝐼, 𝐽} | |
2 | prfi 8816 | . . . 4 ⊢ {𝐼, 𝐽} ∈ Fin | |
3 | 1, 2 | eqeltri 2849 | . . 3 ⊢ 𝐴 ∈ Fin |
4 | efmnd1bas.1 | . . . 4 ⊢ 𝐺 = (EndoFMnd‘𝐴) | |
5 | efmnd1bas.2 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
6 | 4, 5 | efmndhash 18097 | . . 3 ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴))) |
7 | 3, 6 | ax-mp 5 | . 2 ⊢ (♯‘𝐵) = ((♯‘𝐴)↑(♯‘𝐴)) |
8 | 1 | fveq2i 6659 | . . . . 5 ⊢ (♯‘𝐴) = (♯‘{𝐼, 𝐽}) |
9 | elex 3429 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
10 | elex 3429 | . . . . . . 7 ⊢ (𝐽 ∈ 𝑊 → 𝐽 ∈ V) | |
11 | id 22 | . . . . . . 7 ⊢ (𝐼 ≠ 𝐽 → 𝐼 ≠ 𝐽) | |
12 | 9, 10, 11 | 3anim123i 1149 | . . . . . 6 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽)) |
13 | hashprb 13798 | . . . . . 6 ⊢ ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼 ≠ 𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2) | |
14 | 12, 13 | sylib 221 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘{𝐼, 𝐽}) = 2) |
15 | 8, 14 | syl5eq 2806 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐴) = 2) |
16 | 15, 15 | oveq12d 7166 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → ((♯‘𝐴)↑(♯‘𝐴)) = (2↑2)) |
17 | sq2 13600 | . . 3 ⊢ (2↑2) = 4 | |
18 | 16, 17 | eqtrdi 2810 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → ((♯‘𝐴)↑(♯‘𝐴)) = 4) |
19 | 7, 18 | syl5eq 2806 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 4) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 {cpr 4522 ‘cfv 6333 (class class class)co 7148 Fincfn 8525 2c2 11719 4c4 11721 ↑cexp 13469 ♯chash 13730 Basecbs 16531 EndoFMndcefmnd 18089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7457 ax-cnex 10621 ax-resscn 10622 ax-1cn 10623 ax-icn 10624 ax-addcl 10625 ax-addrcl 10626 ax-mulcl 10627 ax-mulrcl 10628 ax-mulcom 10629 ax-addass 10630 ax-mulass 10631 ax-distr 10632 ax-i2m1 10633 ax-1ne0 10634 ax-1rid 10635 ax-rnegex 10636 ax-rrecex 10637 ax-cnre 10638 ax-pre-lttri 10639 ax-pre-lttrn 10640 ax-pre-ltadd 10641 ax-pre-mulgt0 10642 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5428 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-xp 5528 df-rel 5529 df-cnv 5530 df-co 5531 df-dm 5532 df-rn 5533 df-res 5534 df-ima 5535 df-pred 6124 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 df-iota 6292 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7106 df-ov 7151 df-oprab 7152 df-mpo 7153 df-om 7578 df-1st 7691 df-2nd 7692 df-wrecs 7955 df-recs 8016 df-rdg 8054 df-1o 8110 df-2o 8111 df-oadd 8114 df-er 8297 df-map 8416 df-pm 8417 df-en 8526 df-dom 8527 df-sdom 8528 df-fin 8529 df-dju 9353 df-card 9391 df-pnf 10705 df-mnf 10706 df-xr 10707 df-ltxr 10708 df-le 10709 df-sub 10900 df-neg 10901 df-nn 11665 df-2 11727 df-3 11728 df-4 11729 df-5 11730 df-6 11731 df-7 11732 df-8 11733 df-9 11734 df-n0 11925 df-z 12011 df-uz 12273 df-fz 12930 df-seq 13409 df-exp 13470 df-hash 13731 df-struct 16533 df-ndx 16534 df-slot 16535 df-base 16537 df-plusg 16626 df-tset 16632 df-efmnd 18090 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |