Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lgsmulsqcoprm | Structured version Visualization version GIF version |
Description: The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
lgsmulsqcoprm | ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsqcl 13858 | . . . . 5 ⊢ (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ) | |
2 | 1 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴↑2) ∈ ℤ) |
3 | simpl 483 | . . . 4 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ) | |
4 | simpl 483 | . . . 4 ⊢ ((𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℤ) | |
5 | 2, 3, 4 | 3anim123i 1150 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
6 | zcn 12334 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℂ) | |
7 | sqne0 13853 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0)) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝐴 ∈ ℤ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0)) |
9 | 8 | biimpar 478 | . . . . 5 ⊢ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴↑2) ≠ 0) |
10 | simpr 485 | . . . . 5 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0) | |
11 | 9, 10 | anim12i 613 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0)) |
12 | 11 | 3adant3 1131 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0)) |
13 | lgsdir 26490 | . . 3 ⊢ ((((𝐴↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁))) | |
14 | 5, 12, 13 | syl2anc 584 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁))) |
15 | 3anass 1094 | . . . . . 6 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ↔ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))) | |
16 | 15 | biimpri 227 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
17 | 16 | 3adant2 1130 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) |
18 | lgssq 26495 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) /L 𝑁) = 1) |
20 | 19 | oveq1d 7282 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁)) = (1 · (𝐵 /L 𝑁))) |
21 | 3, 4 | anim12i 613 | . . . . . 6 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
22 | 21 | 3adant1 1129 | . . . . 5 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
23 | lgscl 26469 | . . . . 5 ⊢ ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 /L 𝑁) ∈ ℤ) |
25 | 24 | zcnd 12437 | . . 3 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 /L 𝑁) ∈ ℂ) |
26 | 25 | mulid2d 11003 | . 2 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (1 · (𝐵 /L 𝑁)) = (𝐵 /L 𝑁)) |
27 | 14, 20, 26 | 3eqtrd 2782 | 1 ⊢ (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 (class class class)co 7267 ℂcc 10879 0cc0 10881 1c1 10882 · cmul 10886 2c2 12038 ℤcz 12329 ↑cexp 13792 gcd cgcd 16211 /L clgs 26452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 ax-pre-sup 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-1st 7820 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-1o 8284 df-2o 8285 df-oadd 8288 df-er 8485 df-map 8604 df-en 8721 df-dom 8722 df-sdom 8723 df-fin 8724 df-sup 9188 df-inf 9189 df-dju 9669 df-card 9707 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-div 11643 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-xnn0 12316 df-z 12330 df-uz 12593 df-q 12699 df-rp 12741 df-fz 13250 df-fzo 13393 df-fl 13522 df-mod 13600 df-seq 13732 df-exp 13793 df-hash 14055 df-cj 14820 df-re 14821 df-im 14822 df-sqrt 14956 df-abs 14957 df-dvds 15974 df-gcd 16212 df-prm 16387 df-phi 16477 df-pc 16548 df-lgs 26453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |