MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsmulsqcoprm Structured version   Visualization version   GIF version

Theorem lgsmulsqcoprm 25835
Description: The Legendre (Jacobi) symbol is preserved under multiplication with a square of an integer coprime to the second argument. Theorem 9.9(d) in [ApostolNT] p. 188. (Contributed by AV, 20-Jul-2021.)
Assertion
Ref Expression
lgsmulsqcoprm (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁))

Proof of Theorem lgsmulsqcoprm
StepHypRef Expression
1 zsqcl 13487 . . . . 5 (𝐴 ∈ ℤ → (𝐴↑2) ∈ ℤ)
21adantr 481 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴↑2) ∈ ℤ)
3 simpl 483 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ∈ ℤ)
4 simpl 483 . . . 4 ((𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
52, 3, 43anim123i 1145 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 zcn 11978 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
7 sqne0 13482 . . . . . . 7 (𝐴 ∈ ℂ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))
86, 7syl 17 . . . . . 6 (𝐴 ∈ ℤ → ((𝐴↑2) ≠ 0 ↔ 𝐴 ≠ 0))
98biimpar 478 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → (𝐴↑2) ≠ 0)
10 simpr 485 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → 𝐵 ≠ 0)
119, 10anim12i 612 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0))
12113adant3 1126 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0))
13 lgsdir 25824 . . 3 ((((𝐴↑2) ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝐴↑2) ≠ 0 ∧ 𝐵 ≠ 0)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁)))
145, 12, 13syl2anc 584 . 2 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁)))
15 3anass 1089 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) ↔ ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)))
1615biimpri 229 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
17163adant2 1125 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1))
18 lgssq 25829 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1) → ((𝐴↑2) /L 𝑁) = 1)
1917, 18syl 17 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → ((𝐴↑2) /L 𝑁) = 1)
2019oveq1d 7166 . 2 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) /L 𝑁) · (𝐵 /L 𝑁)) = (1 · (𝐵 /L 𝑁)))
213, 4anim12i 612 . . . . . 6 (((𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ))
22213adant1 1124 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ))
23 lgscl 25803 . . . . 5 ((𝐵 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐵 /L 𝑁) ∈ ℤ)
2422, 23syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 /L 𝑁) ∈ ℤ)
2524zcnd 12080 . . 3 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (𝐵 /L 𝑁) ∈ ℂ)
2625mulid2d 10651 . 2 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (1 · (𝐵 /L 𝑁)) = (𝐵 /L 𝑁))
2714, 20, 263eqtrd 2864 1 (((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) ∧ (𝑁 ∈ ℤ ∧ (𝐴 gcd 𝑁) = 1)) → (((𝐴↑2) · 𝐵) /L 𝑁) = (𝐵 /L 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3020  (class class class)co 7151  cc 10527  0cc0 10529  1c1 10530   · cmul 10534  2c2 11684  cz 11973  cexp 13422   gcd cgcd 15835   /L clgs 25786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-map 8401  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-dju 9322  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-mod 13231  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-dvds 15600  df-gcd 15836  df-prm 16008  df-phi 16095  df-pc 16166  df-lgs 25787
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator