MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetalem2 Structured version   Visualization version   GIF version

Theorem noetalem2 27090
Description: Lemma for noeta 27091. The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024.)
Hypotheses
Ref Expression
noetalem2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem2.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noetalem2 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐   𝑔,𝑎,𝐴,𝑢,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑐   𝑔,𝑏,𝐵   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑂,𝑐   𝑢,𝑂,𝑦   𝑆,𝑎,𝑏,𝑐   𝑆,𝑔,𝑥   𝑇,𝑎,𝑏,𝑐   𝑇,𝑔,𝑥   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)

Proof of Theorem noetalem2
StepHypRef Expression
1 elex 3463 . . . 4 (𝐴𝑉𝐴 ∈ V)
21anim2i 617 . . 3 ((𝐴 No 𝐴𝑉) → (𝐴 No 𝐴 ∈ V))
3 elex 3463 . . . 4 (𝐵𝑊𝐵 ∈ V)
43anim2i 617 . . 3 ((𝐵 No 𝐵𝑊) → (𝐵 No 𝐵 ∈ V))
5 id 22 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏)
62, 4, 53anim123i 1151 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏))
7 noetalem2.1 . . . 4 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
8 noetalem2.2 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
9 eqid 2736 . . . 4 (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
10 eqid 2736 . . . 4 (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
117, 8, 9, 10noetalem1 27089 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
12 breq2 5109 . . . . . . 7 (𝑐 = 𝑆 → (𝑎 <s 𝑐𝑎 <s 𝑆))
1312ralbidv 3174 . . . . . 6 (𝑐 = 𝑆 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑆))
14 breq1 5108 . . . . . . 7 (𝑐 = 𝑆 → (𝑐 <s 𝑏𝑆 <s 𝑏))
1514ralbidv 3174 . . . . . 6 (𝑐 = 𝑆 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑆 <s 𝑏))
16 fveq2 6842 . . . . . . 7 (𝑐 = 𝑆 → ( bday 𝑐) = ( bday 𝑆))
1716sseq1d 3975 . . . . . 6 (𝑐 = 𝑆 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑆) ⊆ 𝑂))
1813, 15, 173anbi123d 1436 . . . . 5 (𝑐 = 𝑆 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)))
1918rspcev 3581 . . . 4 ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
20 breq2 5109 . . . . . . 7 (𝑐 = 𝑇 → (𝑎 <s 𝑐𝑎 <s 𝑇))
2120ralbidv 3174 . . . . . 6 (𝑐 = 𝑇 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑇))
22 breq1 5108 . . . . . . 7 (𝑐 = 𝑇 → (𝑐 <s 𝑏𝑇 <s 𝑏))
2322ralbidv 3174 . . . . . 6 (𝑐 = 𝑇 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑇 <s 𝑏))
24 fveq2 6842 . . . . . . 7 (𝑐 = 𝑇 → ( bday 𝑐) = ( bday 𝑇))
2524sseq1d 3975 . . . . . 6 (𝑐 = 𝑇 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑇) ⊆ 𝑂))
2621, 23, 253anbi123d 1436 . . . . 5 (𝑐 = 𝑇 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))
2726rspcev 3581 . . . 4 ((𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2819, 27jaoi 855 . . 3 (((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2911, 28syl 17 . 2 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
306, 29sylan 580 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  {cab 2713  wral 3064  wrex 3073  Vcvv 3445  cdif 3907  cun 3908  wss 3910  ifcif 4486  {csn 4586  cop 4592   cuni 4865   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  cres 5635  cima 5636  Oncon0 6317  suc csuc 6319  cio 6446  cfv 6496  crio 7312  1oc1o 8405  2oc2o 8406   No csur 26988   <s cslt 26989   bday cbday 26990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993
This theorem is referenced by:  noeta  27091
  Copyright terms: Public domain W3C validator