Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem2 Structured version   Visualization version   GIF version

Theorem noetalem2 33872
Description: Lemma for noeta 33873. The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024.)
Hypotheses
Ref Expression
noetalem2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem2.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noetalem2 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑐   𝑔,𝑎,𝐴,𝑢,𝑣,𝑥,𝑦   𝐵,𝑎,𝑏,𝑐   𝑔,𝑏,𝐵   𝑢,𝐵   𝑣,𝑏,𝐵,𝑥,𝑦   𝑢,𝑔,𝑣,𝑥,𝑦   𝑂,𝑐   𝑢,𝑂,𝑦   𝑆,𝑎,𝑏,𝑐   𝑆,𝑔,𝑥   𝑇,𝑎,𝑏,𝑐   𝑇,𝑔,𝑥   𝑣,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)

Proof of Theorem noetalem2
StepHypRef Expression
1 elex 3440 . . . 4 (𝐴𝑉𝐴 ∈ V)
21anim2i 616 . . 3 ((𝐴 No 𝐴𝑉) → (𝐴 No 𝐴 ∈ V))
3 elex 3440 . . . 4 (𝐵𝑊𝐵 ∈ V)
43anim2i 616 . . 3 ((𝐵 No 𝐵𝑊) → (𝐵 No 𝐵 ∈ V))
5 id 22 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏)
62, 4, 53anim123i 1149 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏))
7 noetalem2.1 . . . 4 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
8 noetalem2.2 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
9 eqid 2738 . . . 4 (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
10 eqid 2738 . . . 4 (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
117, 8, 9, 10noetalem1 33871 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
12 breq2 5074 . . . . . . 7 (𝑐 = 𝑆 → (𝑎 <s 𝑐𝑎 <s 𝑆))
1312ralbidv 3120 . . . . . 6 (𝑐 = 𝑆 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑆))
14 breq1 5073 . . . . . . 7 (𝑐 = 𝑆 → (𝑐 <s 𝑏𝑆 <s 𝑏))
1514ralbidv 3120 . . . . . 6 (𝑐 = 𝑆 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑆 <s 𝑏))
16 fveq2 6756 . . . . . . 7 (𝑐 = 𝑆 → ( bday 𝑐) = ( bday 𝑆))
1716sseq1d 3948 . . . . . 6 (𝑐 = 𝑆 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑆) ⊆ 𝑂))
1813, 15, 173anbi123d 1434 . . . . 5 (𝑐 = 𝑆 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)))
1918rspcev 3552 . . . 4 ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
20 breq2 5074 . . . . . . 7 (𝑐 = 𝑇 → (𝑎 <s 𝑐𝑎 <s 𝑇))
2120ralbidv 3120 . . . . . 6 (𝑐 = 𝑇 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑇))
22 breq1 5073 . . . . . . 7 (𝑐 = 𝑇 → (𝑐 <s 𝑏𝑇 <s 𝑏))
2322ralbidv 3120 . . . . . 6 (𝑐 = 𝑇 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑇 <s 𝑏))
24 fveq2 6756 . . . . . . 7 (𝑐 = 𝑇 → ( bday 𝑐) = ( bday 𝑇))
2524sseq1d 3948 . . . . . 6 (𝑐 = 𝑇 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑇) ⊆ 𝑂))
2621, 23, 253anbi123d 1434 . . . . 5 (𝑐 = 𝑇 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))
2726rspcev 3552 . . . 4 ((𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2819, 27jaoi 853 . . 3 (((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2911, 28syl 17 . 2 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
306, 29sylan 579 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 843  w3a 1085   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  cun 3881  wss 3883  ifcif 4456  {csn 4558  cop 4564   cuni 4836   class class class wbr 5070  cmpt 5153   × cxp 5578  dom cdm 5580  cres 5582  cima 5583  Oncon0 6251  suc csuc 6253  cio 6374  cfv 6418  crio 7211  1oc1o 8260  2oc2o 8261   No csur 33770   <s cslt 33771   bday cbday 33772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-1o 8267  df-2o 8268  df-no 33773  df-slt 33774  df-bday 33775
This theorem is referenced by:  noeta  33873
  Copyright terms: Public domain W3C validator