Proof of Theorem noetalem2
Step | Hyp | Ref
| Expression |
1 | | elex 3440 |
. . . 4
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
2 | 1 | anim2i 616 |
. . 3
⊢ ((𝐴 ⊆
No ∧ 𝐴 ∈
𝑉) → (𝐴 ⊆
No ∧ 𝐴 ∈
V)) |
3 | | elex 3440 |
. . . 4
⊢ (𝐵 ∈ 𝑊 → 𝐵 ∈ V) |
4 | 3 | anim2i 616 |
. . 3
⊢ ((𝐵 ⊆
No ∧ 𝐵 ∈
𝑊) → (𝐵 ⊆
No ∧ 𝐵 ∈
V)) |
5 | | id 22 |
. . 3
⊢
(∀𝑎 ∈
𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏 → ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) |
6 | 2, 4, 5 | 3anim123i 1149 |
. 2
⊢ (((𝐴 ⊆
No ∧ 𝐴 ∈
𝑉) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑊) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) → ((𝐴 ⊆ No
∧ 𝐴 ∈ V) ∧
(𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏)) |
7 | | noetalem2.1 |
. . . 4
⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
8 | | noetalem2.2 |
. . . 4
⊢ 𝑇 = if(∃𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥, ((℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥) ∪ {〈dom (℩𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ¬ 𝑦 <s 𝑥), 1o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐵 (¬ 𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
9 | | eqid 2738 |
. . . 4
⊢ (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
10 | | eqid 2738 |
. . . 4
⊢ (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) = (𝑇 ∪ ((suc ∪ ( bday “ 𝐴) ∖ dom 𝑇) × {2o})) |
11 | 7, 8, 9, 10 | noetalem1 33871 |
. . 3
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ((𝑆 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) ∨ (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂)))) |
12 | | breq2 5074 |
. . . . . . 7
⊢ (𝑐 = 𝑆 → (𝑎 <s 𝑐 ↔ 𝑎 <s 𝑆)) |
13 | 12 | ralbidv 3120 |
. . . . . 6
⊢ (𝑐 = 𝑆 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑆)) |
14 | | breq1 5073 |
. . . . . . 7
⊢ (𝑐 = 𝑆 → (𝑐 <s 𝑏 ↔ 𝑆 <s 𝑏)) |
15 | 14 | ralbidv 3120 |
. . . . . 6
⊢ (𝑐 = 𝑆 → (∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏)) |
16 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑐 = 𝑆 → ( bday
‘𝑐) = ( bday ‘𝑆)) |
17 | 16 | sseq1d 3948 |
. . . . . 6
⊢ (𝑐 = 𝑆 → (( bday
‘𝑐) ⊆
𝑂 ↔ ( bday ‘𝑆) ⊆ 𝑂)) |
18 | 13, 15, 17 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑐 = 𝑆 → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂))) |
19 | 18 | rspcev 3552 |
. . . 4
⊢ ((𝑆 ∈
No ∧ (∀𝑎
∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) → ∃𝑐 ∈
No (∀𝑎
∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂)) |
20 | | breq2 5074 |
. . . . . . 7
⊢ (𝑐 = 𝑇 → (𝑎 <s 𝑐 ↔ 𝑎 <s 𝑇)) |
21 | 20 | ralbidv 3120 |
. . . . . 6
⊢ (𝑐 = 𝑇 → (∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ↔ ∀𝑎 ∈ 𝐴 𝑎 <s 𝑇)) |
22 | | breq1 5073 |
. . . . . . 7
⊢ (𝑐 = 𝑇 → (𝑐 <s 𝑏 ↔ 𝑇 <s 𝑏)) |
23 | 22 | ralbidv 3120 |
. . . . . 6
⊢ (𝑐 = 𝑇 → (∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ↔ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏)) |
24 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑐 = 𝑇 → ( bday
‘𝑐) = ( bday ‘𝑇)) |
25 | 24 | sseq1d 3948 |
. . . . . 6
⊢ (𝑐 = 𝑇 → (( bday
‘𝑐) ⊆
𝑂 ↔ ( bday ‘𝑇) ⊆ 𝑂)) |
26 | 21, 23, 25 | 3anbi123d 1434 |
. . . . 5
⊢ (𝑐 = 𝑇 → ((∀𝑎 ∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂) ↔ (∀𝑎 ∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂))) |
27 | 26 | rspcev 3552 |
. . . 4
⊢ ((𝑇 ∈
No ∧ (∀𝑎
∈ 𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂)) → ∃𝑐 ∈
No (∀𝑎
∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂)) |
28 | 19, 27 | jaoi 853 |
. . 3
⊢ (((𝑆 ∈
No ∧ (∀𝑎
∈ 𝐴 𝑎 <s 𝑆 ∧ ∀𝑏 ∈ 𝐵 𝑆 <s 𝑏 ∧ ( bday
‘𝑆) ⊆
𝑂)) ∨ (𝑇 ∈ No
∧ (∀𝑎 ∈
𝐴 𝑎 <s 𝑇 ∧ ∀𝑏 ∈ 𝐵 𝑇 <s 𝑏 ∧ ( bday
‘𝑇) ⊆
𝑂))) → ∃𝑐 ∈
No (∀𝑎
∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂)) |
29 | 11, 28 | syl 17 |
. 2
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
V) ∧ (𝐵 ⊆ No ∧ 𝐵 ∈ V) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ∃𝑐 ∈
No (∀𝑎
∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂)) |
30 | 6, 29 | sylan 579 |
1
⊢ ((((𝐴 ⊆
No ∧ 𝐴 ∈
𝑉) ∧ (𝐵 ⊆ No
∧ 𝐵 ∈ 𝑊) ∧ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ (
bday “ (𝐴
∪ 𝐵)) ⊆ 𝑂)) → ∃𝑐 ∈
No (∀𝑎
∈ 𝐴 𝑎 <s 𝑐 ∧ ∀𝑏 ∈ 𝐵 𝑐 <s 𝑏 ∧ ( bday
‘𝑐) ⊆
𝑂)) |