MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetalem2 Structured version   Visualization version   GIF version

Theorem noetalem2 27742
Description: Lemma for noeta 27743. The full statement of the theorem with hypotheses in place. (Contributed by Scott Fenton, 10-Aug-2024.)
Hypotheses
Ref Expression
noetalem2.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem2.2 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
Assertion
Ref Expression
noetalem2 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Distinct variable groups:   𝐴,𝑎,𝑏,𝑣,𝑦   𝑢,𝑂,𝑦   𝐵,𝑎,𝑔,𝑢,𝑣,𝑥,𝑦   𝑆,𝑎,𝑔,𝑥   𝑂,𝑐   𝐵,𝑏,𝑐,𝑎   𝐴,𝑔,𝑢,𝑥   𝐴,𝑐   𝑇,𝑎,𝑏,𝑔,𝑥   𝑆,𝑏,𝑐   𝑇,𝑐
Allowed substitution hints:   𝑆(𝑦,𝑣,𝑢)   𝑇(𝑦,𝑣,𝑢)   𝑂(𝑥,𝑣,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑔,𝑎,𝑏,𝑐)

Proof of Theorem noetalem2
StepHypRef Expression
1 elex 3485 . . . 4 (𝐴𝑉𝐴 ∈ V)
21anim2i 617 . . 3 ((𝐴 No 𝐴𝑉) → (𝐴 No 𝐴 ∈ V))
3 elex 3485 . . . 4 (𝐵𝑊𝐵 ∈ V)
43anim2i 617 . . 3 ((𝐵 No 𝐵𝑊) → (𝐵 No 𝐵 ∈ V))
5 id 22 . . 3 (∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏 → ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏)
62, 4, 53anim123i 1151 . 2 (((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) → ((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏))
7 noetalem2.1 . . . 4 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
8 noetalem2.2 . . . 4 𝑇 = if(∃𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥, ((𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥) ∪ {⟨dom (𝑥𝐵𝑦𝐵 ¬ 𝑦 <s 𝑥), 1o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐵 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐵 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐵𝑢 <s 𝑣 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
9 eqid 2734 . . . 4 (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
10 eqid 2734 . . . 4 (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o})) = (𝑇 ∪ ((suc ( bday 𝐴) ∖ dom 𝑇) × {2o}))
117, 8, 9, 10noetalem1 27741 . . 3 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))))
12 breq2 5129 . . . . . . 7 (𝑐 = 𝑆 → (𝑎 <s 𝑐𝑎 <s 𝑆))
1312ralbidv 3165 . . . . . 6 (𝑐 = 𝑆 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑆))
14 breq1 5128 . . . . . . 7 (𝑐 = 𝑆 → (𝑐 <s 𝑏𝑆 <s 𝑏))
1514ralbidv 3165 . . . . . 6 (𝑐 = 𝑆 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑆 <s 𝑏))
16 fveq2 6887 . . . . . . 7 (𝑐 = 𝑆 → ( bday 𝑐) = ( bday 𝑆))
1716sseq1d 3997 . . . . . 6 (𝑐 = 𝑆 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑆) ⊆ 𝑂))
1813, 15, 173anbi123d 1437 . . . . 5 (𝑐 = 𝑆 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)))
1918rspcev 3606 . . . 4 ((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
20 breq2 5129 . . . . . . 7 (𝑐 = 𝑇 → (𝑎 <s 𝑐𝑎 <s 𝑇))
2120ralbidv 3165 . . . . . 6 (𝑐 = 𝑇 → (∀𝑎𝐴 𝑎 <s 𝑐 ↔ ∀𝑎𝐴 𝑎 <s 𝑇))
22 breq1 5128 . . . . . . 7 (𝑐 = 𝑇 → (𝑐 <s 𝑏𝑇 <s 𝑏))
2322ralbidv 3165 . . . . . 6 (𝑐 = 𝑇 → (∀𝑏𝐵 𝑐 <s 𝑏 ↔ ∀𝑏𝐵 𝑇 <s 𝑏))
24 fveq2 6887 . . . . . . 7 (𝑐 = 𝑇 → ( bday 𝑐) = ( bday 𝑇))
2524sseq1d 3997 . . . . . 6 (𝑐 = 𝑇 → (( bday 𝑐) ⊆ 𝑂 ↔ ( bday 𝑇) ⊆ 𝑂))
2621, 23, 253anbi123d 1437 . . . . 5 (𝑐 = 𝑇 → ((∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂) ↔ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)))
2726rspcev 3606 . . . 4 ((𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2819, 27jaoi 857 . . 3 (((𝑆 No ∧ (∀𝑎𝐴 𝑎 <s 𝑆 ∧ ∀𝑏𝐵 𝑆 <s 𝑏 ∧ ( bday 𝑆) ⊆ 𝑂)) ∨ (𝑇 No ∧ (∀𝑎𝐴 𝑎 <s 𝑇 ∧ ∀𝑏𝐵 𝑇 <s 𝑏 ∧ ( bday 𝑇) ⊆ 𝑂))) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
2911, 28syl 17 . 2 ((((𝐴 No 𝐴 ∈ V) ∧ (𝐵 No 𝐵 ∈ V) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
306, 29sylan 580 1 ((((𝐴 No 𝐴𝑉) ∧ (𝐵 No 𝐵𝑊) ∧ ∀𝑎𝐴𝑏𝐵 𝑎 <s 𝑏) ∧ (𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂)) → ∃𝑐 No (∀𝑎𝐴 𝑎 <s 𝑐 ∧ ∀𝑏𝐵 𝑐 <s 𝑏 ∧ ( bday 𝑐) ⊆ 𝑂))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  {cab 2712  wral 3050  wrex 3059  Vcvv 3464  cdif 3930  cun 3931  wss 3933  ifcif 4507  {csn 4608  cop 4614   cuni 4889   class class class wbr 5125  cmpt 5207   × cxp 5665  dom cdm 5667  cres 5669  cima 5670  Oncon0 6365  suc csuc 6367  cio 6493  cfv 6542  crio 7370  1oc1o 8482  2oc2o 8483   No csur 27639   <s cslt 27640   bday cbday 27641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-ord 6368  df-on 6369  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-1o 8489  df-2o 8490  df-no 27642  df-slt 27643  df-bday 27644
This theorem is referenced by:  noeta  27743
  Copyright terms: Public domain W3C validator