Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  noetalem2 Structured version   Visualization version   GIF version

Theorem noetalem2 32829
Description: Lemma for noeta 32833. 𝑍 is an upper bound for 𝐴. Part of Theorem 5.1 of [Lipparini] p. 7-8. (Contributed by Scott Fenton, 4-Dec-2021.)
Hypotheses
Ref Expression
noetalem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetalem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetalem2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Distinct variable groups:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦   𝑢,𝑋,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑋(𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetalem2
StepHypRef Expression
1 simpl1 1184 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 No )
2 simpl2 1185 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝐴 ∈ V)
3 simpr 485 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋𝐴)
4 noetalem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
54nosupbnd1 32825 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
61, 2, 3, 5syl3anc 1364 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s 𝑆)
7 noetalem.2 . . . . . 6 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
87reseq1i 5737 . . . . 5 (𝑍 ↾ dom 𝑆) = ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆)
9 resundir 5756 . . . . . 6 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆))
10 df-res 5462 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V))
11 incom 4105 . . . . . . . . . 10 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆))
12 disjdif 4341 . . . . . . . . . 10 (dom 𝑆 ∩ (suc ( bday 𝐵) ∖ dom 𝑆)) = ∅
1311, 12eqtri 2821 . . . . . . . . 9 ((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅
14 xpdisj1 5901 . . . . . . . . 9 (((suc ( bday 𝐵) ∖ dom 𝑆) ∩ dom 𝑆) = ∅ → (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅)
1513, 14ax-mp 5 . . . . . . . 8 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ∩ (dom 𝑆 × V)) = ∅
1610, 15eqtri 2821 . . . . . . 7 (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆) = ∅
1716uneq2i 4063 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ (((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}) ↾ dom 𝑆)) = ((𝑆 ↾ dom 𝑆) ∪ ∅)
18 un0 4270 . . . . . 6 ((𝑆 ↾ dom 𝑆) ∪ ∅) = (𝑆 ↾ dom 𝑆)
199, 17, 183eqtri 2825 . . . . 5 ((𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
208, 19eqtri 2821 . . . 4 (𝑍 ↾ dom 𝑆) = (𝑆 ↾ dom 𝑆)
214nosupno 32814 . . . . . . 7 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
221, 2, 21syl2anc 584 . . . . . 6 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑆 No )
23 nofun 32767 . . . . . 6 (𝑆 No → Fun 𝑆)
2422, 23syl 17 . . . . 5 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → Fun 𝑆)
25 funrel 6249 . . . . 5 (Fun 𝑆 → Rel 𝑆)
26 resdm 5785 . . . . 5 (Rel 𝑆 → (𝑆 ↾ dom 𝑆) = 𝑆)
2724, 25, 263syl 18 . . . 4 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑆 ↾ dom 𝑆) = 𝑆)
2820, 27syl5eq 2845 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑍 ↾ dom 𝑆) = 𝑆)
296, 28breqtrrd 4996 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → (𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆))
30 simp1 1129 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝐴 No )
3130sselda 3895 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 No )
324, 7noetalem1 32828 . . . 4 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
3332adantr 481 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑍 No )
34 nodmon 32768 . . . 4 (𝑆 No → dom 𝑆 ∈ On)
3522, 34syl 17 . . 3 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → dom 𝑆 ∈ On)
36 sltres 32780 . . 3 ((𝑋 No 𝑍 No ∧ dom 𝑆 ∈ On) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3731, 33, 35, 36syl3anc 1364 . 2 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → ((𝑋 ↾ dom 𝑆) <s (𝑍 ↾ dom 𝑆) → 𝑋 <s 𝑍))
3829, 37mpd 15 1 (((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ 𝑋𝐴) → 𝑋 <s 𝑍)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1080   = wceq 1525  wcel 2083  {cab 2777  wral 3107  wrex 3108  Vcvv 3440  cdif 3862  cun 3863  cin 3864  wss 3865  c0 4217  ifcif 4387  {csn 4478  cop 4484   cuni 4751   class class class wbr 4968  cmpt 5047   × cxp 5448  dom cdm 5450  cres 5452  cima 5453  Rel wrel 5455  Oncon0 6073  suc csuc 6075  cio 6194  Fun wfun 6226  cfv 6232  crio 6983  1oc1o 7953  2oc2o 7954   No csur 32758   <s cslt 32759   bday cbday 32760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-ord 6076  df-on 6077  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-1o 7960  df-2o 7961  df-no 32761  df-slt 32762  df-bday 32763
This theorem is referenced by:  noetalem5  32832
  Copyright terms: Public domain W3C validator