MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flltdivnn0lt Structured version   Visualization version   GIF version

Theorem flltdivnn0lt 13794
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 nn0nndivcl 12539 . . . . . . 7 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
2 reflcl 13757 . . . . . . 7 ((𝐾 / 𝐿) ∈ ℝ → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
31, 2syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
433adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
513adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
6 nn0nndivcl 12539 . . . . . 6 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
763adant1 1130 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
84, 5, 73jca 1128 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
98adantr 481 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
10 fldivnn0le 13793 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
11103adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
1211adantr 481 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
13 simpr 485 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
14 nn0re 12477 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
15 nn0re 12477 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
16 nnre 12215 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
17 nngt0 12239 . . . . . . . . 9 (𝐿 ∈ ℕ → 0 < 𝐿)
1816, 17jca 512 . . . . . . . 8 (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿))
1914, 15, 183anim123i 1151 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
2019adantr 481 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
21 ltdiv1 12074 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2220, 21syl 17 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2313, 22mpbid 231 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿))
2412, 23jca 512 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
25 lelttr 11300 . . 3 (((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ) → (((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
269, 24, 25sylc 65 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))
2726ex 413 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087  wcel 2106   class class class wbr 5147  cfv 6540  (class class class)co 7405  cr 11105  0cc0 11106   < clt 11244  cle 11245   / cdiv 11867  cn 12208  0cn0 12468  cfl 13751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fl 13753
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator