| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > flltdivnn0lt | Structured version Visualization version GIF version | ||
| Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.) |
| Ref | Expression |
|---|---|
| flltdivnn0lt | ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0nndivcl 12573 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) | |
| 2 | reflcl 13813 | . . . . . . 7 ⊢ ((𝐾 / 𝐿) ∈ ℝ → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) |
| 4 | 3 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ) |
| 5 | 1 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ) |
| 6 | nn0nndivcl 12573 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ) | |
| 7 | 6 | 3adant1 1130 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ) |
| 8 | 4, 5, 7 | 3jca 1128 | . . . 4 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ)) |
| 9 | 8 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ)) |
| 10 | fldivnn0le 13849 | . . . . . 6 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) | |
| 11 | 10 | 3adant2 1131 | . . . . 5 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) |
| 12 | 11 | adantr 480 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿)) |
| 13 | simpr 484 | . . . . 5 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁) | |
| 14 | nn0re 12510 | . . . . . . . 8 ⊢ (𝐾 ∈ ℕ0 → 𝐾 ∈ ℝ) | |
| 15 | nn0re 12510 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 16 | nnre 12247 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ → 𝐿 ∈ ℝ) | |
| 17 | nngt0 12271 | . . . . . . . . 9 ⊢ (𝐿 ∈ ℕ → 0 < 𝐿) | |
| 18 | 16, 17 | jca 511 | . . . . . . . 8 ⊢ (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿)) |
| 19 | 14, 15, 18 | 3anim123i 1151 | . . . . . . 7 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿))) |
| 20 | 19 | adantr 480 | . . . . . 6 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿))) |
| 21 | ltdiv1 12106 | . . . . . 6 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿))) | |
| 22 | 20, 21 | syl 17 | . . . . 5 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿))) |
| 23 | 13, 22 | mpbid 232 | . . . 4 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿)) |
| 24 | 12, 23 | jca 511 | . . 3 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿))) |
| 25 | lelttr 11325 | . . 3 ⊢ (((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ) → (((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) | |
| 26 | 9, 24, 25 | sylc 65 | . 2 ⊢ (((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)) |
| 27 | 26 | ex 412 | 1 ⊢ ((𝐾 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ∧ 𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 < clt 11269 ≤ cle 11270 / cdiv 11894 ℕcn 12240 ℕ0cn0 12501 ⌊cfl 13807 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fl 13809 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |