MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flltdivnn0lt Structured version   Visualization version   GIF version

Theorem flltdivnn0lt 13870
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 nn0nndivcl 12596 . . . . . . 7 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
2 reflcl 13833 . . . . . . 7 ((𝐾 / 𝐿) ∈ ℝ → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
31, 2syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
433adant2 1130 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
513adant2 1130 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
6 nn0nndivcl 12596 . . . . . 6 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
763adant1 1129 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
84, 5, 73jca 1127 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
98adantr 480 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
10 fldivnn0le 13869 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
11103adant2 1130 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
1211adantr 480 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
13 simpr 484 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
14 nn0re 12533 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
15 nn0re 12533 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
16 nnre 12271 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
17 nngt0 12295 . . . . . . . . 9 (𝐿 ∈ ℕ → 0 < 𝐿)
1816, 17jca 511 . . . . . . . 8 (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿))
1914, 15, 183anim123i 1150 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
2019adantr 480 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
21 ltdiv1 12130 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2220, 21syl 17 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2313, 22mpbid 232 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿))
2412, 23jca 511 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
25 lelttr 11349 . . 3 (((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ) → (((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
269, 24, 25sylc 65 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))
2726ex 412 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153   < clt 11293  cle 11294   / cdiv 11918  cn 12264  0cn0 12524  cfl 13827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fl 13829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator