MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flltdivnn0lt Structured version   Visualization version   GIF version

Theorem flltdivnn0lt 13884
Description: The floor function of a division of a nonnegative integer by a positive integer is less than the division of a greater dividend by the same positive integer. (Contributed by Alexander van der Vekens, 14-Apr-2018.)
Assertion
Ref Expression
flltdivnn0lt ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))

Proof of Theorem flltdivnn0lt
StepHypRef Expression
1 nn0nndivcl 12624 . . . . . . 7 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
2 reflcl 13847 . . . . . . 7 ((𝐾 / 𝐿) ∈ ℝ → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
31, 2syl 17 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
433adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ∈ ℝ)
513adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 / 𝐿) ∈ ℝ)
6 nn0nndivcl 12624 . . . . . 6 ((𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
763adant1 1130 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝑁 / 𝐿) ∈ ℝ)
84, 5, 73jca 1128 . . . 4 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
98adantr 480 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ))
10 fldivnn0le 13883 . . . . . 6 ((𝐾 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
11103adant2 1131 . . . . 5 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
1211adantr 480 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿))
13 simpr 484 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → 𝐾 < 𝑁)
14 nn0re 12562 . . . . . . . 8 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
15 nn0re 12562 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
16 nnre 12300 . . . . . . . . 9 (𝐿 ∈ ℕ → 𝐿 ∈ ℝ)
17 nngt0 12324 . . . . . . . . 9 (𝐿 ∈ ℕ → 0 < 𝐿)
1816, 17jca 511 . . . . . . . 8 (𝐿 ∈ ℕ → (𝐿 ∈ ℝ ∧ 0 < 𝐿))
1914, 15, 183anim123i 1151 . . . . . . 7 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
2019adantr 480 . . . . . 6 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)))
21 ltdiv1 12159 . . . . . 6 ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (𝐿 ∈ ℝ ∧ 0 < 𝐿)) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2220, 21syl 17 . . . . 5 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 < 𝑁 ↔ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
2313, 22mpbid 232 . . . 4 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (𝐾 / 𝐿) < (𝑁 / 𝐿))
2412, 23jca 511 . . 3 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → ((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)))
25 lelttr 11380 . . 3 (((⌊‘(𝐾 / 𝐿)) ∈ ℝ ∧ (𝐾 / 𝐿) ∈ ℝ ∧ (𝑁 / 𝐿) ∈ ℝ) → (((⌊‘(𝐾 / 𝐿)) ≤ (𝐾 / 𝐿) ∧ (𝐾 / 𝐿) < (𝑁 / 𝐿)) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
269, 24, 25sylc 65 . 2 (((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) ∧ 𝐾 < 𝑁) → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿))
2726ex 412 1 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ0𝐿 ∈ ℕ) → (𝐾 < 𝑁 → (⌊‘(𝐾 / 𝐿)) < (𝑁 / 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184   < clt 11324  cle 11325   / cdiv 11947  cn 12293  0cn0 12553  cfl 13841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator