Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem2 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem2 48752
Description: Lemma 2 for itsclc0yqsol 48753. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q 𝑄 = ((𝐴↑2) + (𝐵↑2))
itscnhlc0yqe.t 𝑇 = -(2 · (𝐵 · 𝐶))
itscnhlc0yqe.u 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
itsclc0yqsollem1.d 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
Assertion
Ref Expression
itsclc0yqsollem2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷)))

Proof of Theorem itsclc0yqsollem2
StepHypRef Expression
1 recn 11158 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 recn 11158 . . . . . . 7 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
3 recn 11158 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
41, 2, 33anim123i 1151 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ))
5 recn 11158 . . . . . 6 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
64, 5anim12i 613 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ))
763adant3 1132 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ))
8 itscnhlc0yqe.q . . . . 5 𝑄 = ((𝐴↑2) + (𝐵↑2))
9 itscnhlc0yqe.t . . . . 5 𝑇 = -(2 · (𝐵 · 𝐶))
10 itscnhlc0yqe.u . . . . 5 𝑈 = ((𝐶↑2) − ((𝐴↑2) · (𝑅↑2)))
11 itsclc0yqsollem1.d . . . . 5 𝐷 = (((𝑅↑2) · 𝑄) − (𝐶↑2))
128, 9, 10, 11itsclc0yqsollem1 48751 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ 𝑅 ∈ ℂ) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
137, 12syl 17 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → ((𝑇↑2) − (4 · (𝑄 · 𝑈))) = ((4 · (𝐴↑2)) · 𝐷))
1413fveq2d 6862 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = (√‘((4 · (𝐴↑2)) · 𝐷)))
15 4re 12270 . . . . 5 4 ∈ ℝ
1615a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 4 ∈ ℝ)
17 simp1 1136 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐴 ∈ ℝ)
1817resqcld 14090 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐴↑2) ∈ ℝ)
19183ad2ant1 1133 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (𝐴↑2) ∈ ℝ)
2016, 19remulcld 11204 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (4 · (𝐴↑2)) ∈ ℝ)
21 0re 11176 . . . . . 6 0 ∈ ℝ
22 4pos 12293 . . . . . 6 0 < 4
2321, 15, 22ltleii 11297 . . . . 5 0 ≤ 4
2423a1i 11 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 0 ≤ 4)
2517sqge0d 14102 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 0 ≤ (𝐴↑2))
26253ad2ant1 1133 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 0 ≤ (𝐴↑2))
2716, 19, 24, 26mulge0d 11755 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 0 ≤ (4 · (𝐴↑2)))
28 simp2 1137 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 𝑅 ∈ ℝ)
2928resqcld 14090 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (𝑅↑2) ∈ ℝ)
308resum2sqcl 48695 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → 𝑄 ∈ ℝ)
31303adant3 1132 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝑄 ∈ ℝ)
32313ad2ant1 1133 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 𝑄 ∈ ℝ)
3329, 32remulcld 11204 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → ((𝑅↑2) · 𝑄) ∈ ℝ)
34 simp3 1138 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → 𝐶 ∈ ℝ)
3534resqcld 14090 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (𝐶↑2) ∈ ℝ)
36353ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (𝐶↑2) ∈ ℝ)
3733, 36resubcld 11606 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (((𝑅↑2) · 𝑄) − (𝐶↑2)) ∈ ℝ)
3811, 37eqeltrid 2832 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 𝐷 ∈ ℝ)
39 simp3 1138 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → 0 ≤ 𝐷)
4020, 27, 38, 39sqrtmuld 15391 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((4 · (𝐴↑2)) · 𝐷)) = ((√‘(4 · (𝐴↑2))) · (√‘𝐷)))
4115, 23pm3.2i 470 . . . . . . . 8 (4 ∈ ℝ ∧ 0 ≤ 4)
4241a1i 11 . . . . . . 7 (𝐴 ∈ ℝ → (4 ∈ ℝ ∧ 0 ≤ 4))
43 resqcl 14089 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴↑2) ∈ ℝ)
44 sqge0 14101 . . . . . . 7 (𝐴 ∈ ℝ → 0 ≤ (𝐴↑2))
45 sqrtmul 15225 . . . . . . 7 (((4 ∈ ℝ ∧ 0 ≤ 4) ∧ ((𝐴↑2) ∈ ℝ ∧ 0 ≤ (𝐴↑2))) → (√‘(4 · (𝐴↑2))) = ((√‘4) · (√‘(𝐴↑2))))
4642, 43, 44, 45syl12anc 836 . . . . . 6 (𝐴 ∈ ℝ → (√‘(4 · (𝐴↑2))) = ((√‘4) · (√‘(𝐴↑2))))
47463ad2ant1 1133 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (√‘(4 · (𝐴↑2))) = ((√‘4) · (√‘(𝐴↑2))))
48473ad2ant1 1133 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘(4 · (𝐴↑2))) = ((√‘4) · (√‘(𝐴↑2))))
49 sqrt4 15238 . . . . . 6 (√‘4) = 2
5049a1i 11 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘4) = 2)
51 absre 15267 . . . . . . . 8 (𝐴 ∈ ℝ → (abs‘𝐴) = (√‘(𝐴↑2)))
5251eqcomd 2735 . . . . . . 7 (𝐴 ∈ ℝ → (√‘(𝐴↑2)) = (abs‘𝐴))
53523ad2ant1 1133 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → (√‘(𝐴↑2)) = (abs‘𝐴))
54533ad2ant1 1133 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘(𝐴↑2)) = (abs‘𝐴))
5550, 54oveq12d 7405 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘4) · (√‘(𝐴↑2))) = (2 · (abs‘𝐴)))
5648, 55eqtrd 2764 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘(4 · (𝐴↑2))) = (2 · (abs‘𝐴)))
5756oveq1d 7402 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → ((√‘(4 · (𝐴↑2))) · (√‘𝐷)) = ((2 · (abs‘𝐴)) · (√‘𝐷)))
5814, 40, 573eqtrd 2768 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) ∧ 𝑅 ∈ ℝ ∧ 0 ≤ 𝐷) → (√‘((𝑇↑2) − (4 · (𝑄 · 𝑈)))) = ((2 · (abs‘𝐴)) · (√‘𝐷)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073  cle 11209  cmin 11405  -cneg 11406  2c2 12241  4c4 12243  cexp 14026  csqrt 15199  abscabs 15200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202
This theorem is referenced by:  itsclc0yqsol  48753
  Copyright terms: Public domain W3C validator