Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itsclc0yqsollem2 Structured version   Visualization version   GIF version

Theorem itsclc0yqsollem2 47402
Description: Lemma 2 for itsclc0yqsol 47403. (Contributed by AV, 6-Feb-2023.)
Hypotheses
Ref Expression
itscnhlc0yqe.q ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
itscnhlc0yqe.t ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
itscnhlc0yqe.u ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
itsclc0yqsollem1.d ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
Assertion
Ref Expression
itsclc0yqsollem2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜((๐‘‡โ†‘2) โˆ’ (4 ยท (๐‘„ ยท ๐‘ˆ)))) = ((2 ยท (absโ€˜๐ด)) ยท (โˆšโ€˜๐ท)))

Proof of Theorem itsclc0yqsollem2
StepHypRef Expression
1 recn 11196 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ ๐ด โˆˆ โ„‚)
2 recn 11196 . . . . . . 7 (๐ต โˆˆ โ„ โ†’ ๐ต โˆˆ โ„‚)
3 recn 11196 . . . . . . 7 (๐ถ โˆˆ โ„ โ†’ ๐ถ โˆˆ โ„‚)
41, 2, 33anim123i 1151 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚))
5 recn 11196 . . . . . 6 (๐‘… โˆˆ โ„ โ†’ ๐‘… โˆˆ โ„‚)
64, 5anim12i 613 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„) โ†’ ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โˆง ๐‘… โˆˆ โ„‚))
763adant3 1132 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โˆง ๐‘… โˆˆ โ„‚))
8 itscnhlc0yqe.q . . . . 5 ๐‘„ = ((๐ดโ†‘2) + (๐ตโ†‘2))
9 itscnhlc0yqe.t . . . . 5 ๐‘‡ = -(2 ยท (๐ต ยท ๐ถ))
10 itscnhlc0yqe.u . . . . 5 ๐‘ˆ = ((๐ถโ†‘2) โˆ’ ((๐ดโ†‘2) ยท (๐‘…โ†‘2)))
11 itsclc0yqsollem1.d . . . . 5 ๐ท = (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2))
128, 9, 10, 11itsclc0yqsollem1 47401 . . . 4 (((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โˆง ๐‘… โˆˆ โ„‚) โ†’ ((๐‘‡โ†‘2) โˆ’ (4 ยท (๐‘„ ยท ๐‘ˆ))) = ((4 ยท (๐ดโ†‘2)) ยท ๐ท))
137, 12syl 17 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ((๐‘‡โ†‘2) โˆ’ (4 ยท (๐‘„ ยท ๐‘ˆ))) = ((4 ยท (๐ดโ†‘2)) ยท ๐ท))
1413fveq2d 6892 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜((๐‘‡โ†‘2) โˆ’ (4 ยท (๐‘„ ยท ๐‘ˆ)))) = (โˆšโ€˜((4 ยท (๐ดโ†‘2)) ยท ๐ท)))
15 4re 12292 . . . . 5 4 โˆˆ โ„
1615a1i 11 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ 4 โˆˆ โ„)
17 simp1 1136 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ๐ด โˆˆ โ„)
1817resqcld 14086 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ดโ†‘2) โˆˆ โ„)
19183ad2ant1 1133 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (๐ดโ†‘2) โˆˆ โ„)
2016, 19remulcld 11240 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (4 ยท (๐ดโ†‘2)) โˆˆ โ„)
21 0re 11212 . . . . . 6 0 โˆˆ โ„
22 4pos 12315 . . . . . 6 0 < 4
2321, 15, 22ltleii 11333 . . . . 5 0 โ‰ค 4
2423a1i 11 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ 0 โ‰ค 4)
2517sqge0d 14098 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ 0 โ‰ค (๐ดโ†‘2))
26253ad2ant1 1133 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ 0 โ‰ค (๐ดโ†‘2))
2716, 19, 24, 26mulge0d 11787 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ 0 โ‰ค (4 ยท (๐ดโ†‘2)))
28 simp2 1137 . . . . . . 7 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ๐‘… โˆˆ โ„)
2928resqcld 14086 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (๐‘…โ†‘2) โˆˆ โ„)
308resum2sqcl 47345 . . . . . . . 8 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„) โ†’ ๐‘„ โˆˆ โ„)
31303adant3 1132 . . . . . . 7 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ๐‘„ โˆˆ โ„)
32313ad2ant1 1133 . . . . . 6 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ๐‘„ โˆˆ โ„)
3329, 32remulcld 11240 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ((๐‘…โ†‘2) ยท ๐‘„) โˆˆ โ„)
34 simp3 1138 . . . . . . 7 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ ๐ถ โˆˆ โ„)
3534resqcld 14086 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (๐ถโ†‘2) โˆˆ โ„)
36353ad2ant1 1133 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (๐ถโ†‘2) โˆˆ โ„)
3733, 36resubcld 11638 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (((๐‘…โ†‘2) ยท ๐‘„) โˆ’ (๐ถโ†‘2)) โˆˆ โ„)
3811, 37eqeltrid 2837 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ๐ท โˆˆ โ„)
39 simp3 1138 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ 0 โ‰ค ๐ท)
4020, 27, 38, 39sqrtmuld 15367 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜((4 ยท (๐ดโ†‘2)) ยท ๐ท)) = ((โˆšโ€˜(4 ยท (๐ดโ†‘2))) ยท (โˆšโ€˜๐ท)))
4115, 23pm3.2i 471 . . . . . . . 8 (4 โˆˆ โ„ โˆง 0 โ‰ค 4)
4241a1i 11 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ (4 โˆˆ โ„ โˆง 0 โ‰ค 4))
43 resqcl 14085 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ (๐ดโ†‘2) โˆˆ โ„)
44 sqge0 14097 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ 0 โ‰ค (๐ดโ†‘2))
45 sqrtmul 15202 . . . . . . 7 (((4 โˆˆ โ„ โˆง 0 โ‰ค 4) โˆง ((๐ดโ†‘2) โˆˆ โ„ โˆง 0 โ‰ค (๐ดโ†‘2))) โ†’ (โˆšโ€˜(4 ยท (๐ดโ†‘2))) = ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ดโ†‘2))))
4642, 43, 44, 45syl12anc 835 . . . . . 6 (๐ด โˆˆ โ„ โ†’ (โˆšโ€˜(4 ยท (๐ดโ†‘2))) = ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ดโ†‘2))))
47463ad2ant1 1133 . . . . 5 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (โˆšโ€˜(4 ยท (๐ดโ†‘2))) = ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ดโ†‘2))))
48473ad2ant1 1133 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜(4 ยท (๐ดโ†‘2))) = ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ดโ†‘2))))
49 sqrt4 15215 . . . . . 6 (โˆšโ€˜4) = 2
5049a1i 11 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜4) = 2)
51 absre 15244 . . . . . . . 8 (๐ด โˆˆ โ„ โ†’ (absโ€˜๐ด) = (โˆšโ€˜(๐ดโ†‘2)))
5251eqcomd 2738 . . . . . . 7 (๐ด โˆˆ โ„ โ†’ (โˆšโ€˜(๐ดโ†‘2)) = (absโ€˜๐ด))
53523ad2ant1 1133 . . . . . 6 ((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โ†’ (โˆšโ€˜(๐ดโ†‘2)) = (absโ€˜๐ด))
54533ad2ant1 1133 . . . . 5 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜(๐ดโ†‘2)) = (absโ€˜๐ด))
5550, 54oveq12d 7423 . . . 4 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ((โˆšโ€˜4) ยท (โˆšโ€˜(๐ดโ†‘2))) = (2 ยท (absโ€˜๐ด)))
5648, 55eqtrd 2772 . . 3 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜(4 ยท (๐ดโ†‘2))) = (2 ยท (absโ€˜๐ด)))
5756oveq1d 7420 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ ((โˆšโ€˜(4 ยท (๐ดโ†‘2))) ยท (โˆšโ€˜๐ท)) = ((2 ยท (absโ€˜๐ด)) ยท (โˆšโ€˜๐ท)))
5814, 40, 573eqtrd 2776 1 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง ๐ถ โˆˆ โ„) โˆง ๐‘… โˆˆ โ„ โˆง 0 โ‰ค ๐ท) โ†’ (โˆšโ€˜((๐‘‡โ†‘2) โˆ’ (4 ยท (๐‘„ ยท ๐‘ˆ)))) = ((2 ยท (absโ€˜๐ด)) ยท (โˆšโ€˜๐ท)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   class class class wbr 5147  โ€˜cfv 6540  (class class class)co 7405  โ„‚cc 11104  โ„cr 11105  0cc0 11106   + caddc 11109   ยท cmul 11111   โ‰ค cle 11245   โˆ’ cmin 11440  -cneg 11441  2c2 12263  4c4 12265  โ†‘cexp 14023  โˆšcsqrt 15176  abscabs 15177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179
This theorem is referenced by:  itsclc0yqsol  47403
  Copyright terms: Public domain W3C validator