Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  refdivmptf Structured version   Visualization version   GIF version

Theorem refdivmptf 47382
Description: The quotient of two functions into the real numbers is a function into the real numbers. (Contributed by AV, 16-May-2020.)
Assertion
Ref Expression
refdivmptf ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)

Proof of Theorem refdivmptf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℝ)
2 suppssdm 8156 . . . . . . . 8 (𝐺 supp 0) ⊆ dom 𝐺
3 fdm 6716 . . . . . . . 8 (𝐺:𝐴⟶ℝ → dom 𝐺 = 𝐴)
42, 3sseqtrid 4026 . . . . . . 7 (𝐺:𝐴⟶ℝ → (𝐺 supp 0) ⊆ 𝐴)
543ad2ant2 1131 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐺 supp 0) ⊆ 𝐴)
65sselda 3974 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥𝐴)
71, 6ffvelcdmd 7077 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹𝑥) ∈ ℝ)
8 simpl2 1189 . . . . 5 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℝ)
98, 6ffvelcdmd 7077 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺𝑥) ∈ ℝ)
10 ffn 6707 . . . . . . 7 (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴)
11103ad2ant2 1131 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → 𝐺 Fn 𝐴)
12 simp3 1135 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → 𝐴𝑉)
13 0red 11213 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → 0 ∈ ℝ)
14 elsuppfn 8150 . . . . . 6 ((𝐺 Fn 𝐴𝐴𝑉 ∧ 0 ∈ ℝ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ≠ 0)))
1511, 12, 13, 14syl3anc 1368 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥𝐴 ∧ (𝐺𝑥) ≠ 0)))
1615simplbda 499 . . . 4 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺𝑥) ≠ 0)
177, 9, 16redivcld 12038 . . 3 (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹𝑥) / (𝐺𝑥)) ∈ ℝ)
1817fmpttd 7106 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))):(𝐺 supp 0)⟶ℝ)
19 id 22 . . . . . 6 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ)
20 ax-resscn 11162 . . . . . . 7 ℝ ⊆ ℂ
2120a1i 11 . . . . . 6 (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ)
2219, 21fssd 6725 . . . . 5 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
23 id 22 . . . . . 6 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ)
2420a1i 11 . . . . . 6 (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ)
2523, 24fssd 6725 . . . . 5 (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ)
26 id 22 . . . . 5 (𝐴𝑉𝐴𝑉)
2722, 25, 263anim123i 1148 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉))
28 fdivmpt 47380 . . . 4 ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
2927, 28syl 17 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))))
3029feq1d 6692 . 2 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹𝑥) / (𝐺𝑥))):(𝐺 supp 0)⟶ℝ))
3118, 30mpbird 257 1 ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wss 3940  cmpt 5221  dom cdm 5666   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7401   supp csupp 8140  cc 11103  cr 11104  0cc0 11105   / cdiv 11867   /f cfdiv 47377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-supp 8141  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-fdiv 47378
This theorem is referenced by:  refdivpm  47384  elbigolo1  47397
  Copyright terms: Public domain W3C validator