| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refdivmptf | Structured version Visualization version GIF version | ||
| Description: The quotient of two functions into the real numbers is a function into the real numbers. (Contributed by AV, 16-May-2020.) |
| Ref | Expression |
|---|---|
| refdivmptf | ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℝ) | |
| 2 | suppssdm 8107 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
| 3 | fdm 6660 | . . . . . . . 8 ⊢ (𝐺:𝐴⟶ℝ → dom 𝐺 = 𝐴) | |
| 4 | 2, 3 | sseqtrid 3977 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℝ → (𝐺 supp 0) ⊆ 𝐴) |
| 5 | 4 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
| 6 | 5 | sselda 3934 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥 ∈ 𝐴) |
| 7 | 1, 6 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹‘𝑥) ∈ ℝ) |
| 8 | simpl2 1193 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℝ) | |
| 9 | 8, 6 | ffvelcdmd 7018 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ∈ ℝ) |
| 10 | ffn 6651 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴) | |
| 11 | 10 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
| 12 | simp3 1138 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 13 | 0red 11112 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 0 ∈ ℝ) | |
| 14 | elsuppfn 8100 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℝ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) | |
| 15 | 11, 12, 13, 14 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) |
| 16 | 15 | simplbda 499 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ≠ 0) |
| 17 | 7, 9, 16 | redivcld 11946 | . . 3 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ ℝ) |
| 18 | 17 | fmpttd 7048 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℝ) |
| 19 | id 22 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ) | |
| 20 | ax-resscn 11060 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 22 | 19, 21 | fssd 6668 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
| 23 | id 22 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ) | |
| 24 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 25 | 23, 24 | fssd 6668 | . . . . 5 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ) |
| 26 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 27 | 22, 25, 26 | 3anim123i 1151 | . . . 4 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉)) |
| 28 | fdivmpt 48571 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 29 | 27, 28 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 30 | 29 | feq1d 6633 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℝ)) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ⊆ wss 3902 ↦ cmpt 5172 dom cdm 5616 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 supp csupp 8090 ℂcc 11001 ℝcr 11002 0cc0 11003 / cdiv 11771 /f cfdiv 48568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-supp 8091 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-div 11772 df-fdiv 48569 |
| This theorem is referenced by: refdivpm 48575 elbigolo1 48588 |
| Copyright terms: Public domain | W3C validator |