| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > refdivmptf | Structured version Visualization version GIF version | ||
| Description: The quotient of two functions into the real numbers is a function into the real numbers. (Contributed by AV, 16-May-2020.) |
| Ref | Expression |
|---|---|
| refdivmptf | ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐹:𝐴⟶ℝ) | |
| 2 | suppssdm 8156 | . . . . . . . 8 ⊢ (𝐺 supp 0) ⊆ dom 𝐺 | |
| 3 | fdm 6697 | . . . . . . . 8 ⊢ (𝐺:𝐴⟶ℝ → dom 𝐺 = 𝐴) | |
| 4 | 2, 3 | sseqtrid 3989 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℝ → (𝐺 supp 0) ⊆ 𝐴) |
| 5 | 4 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐺 supp 0) ⊆ 𝐴) |
| 6 | 5 | sselda 3946 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝑥 ∈ 𝐴) |
| 7 | 1, 6 | ffvelcdmd 7057 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐹‘𝑥) ∈ ℝ) |
| 8 | simpl2 1193 | . . . . 5 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → 𝐺:𝐴⟶ℝ) | |
| 9 | 8, 6 | ffvelcdmd 7057 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ∈ ℝ) |
| 10 | ffn 6688 | . . . . . . 7 ⊢ (𝐺:𝐴⟶ℝ → 𝐺 Fn 𝐴) | |
| 11 | 10 | 3ad2ant2 1134 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn 𝐴) |
| 12 | simp3 1138 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 13 | 0red 11177 | . . . . . 6 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → 0 ∈ ℝ) | |
| 14 | elsuppfn 8149 | . . . . . 6 ⊢ ((𝐺 Fn 𝐴 ∧ 𝐴 ∈ 𝑉 ∧ 0 ∈ ℝ) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) | |
| 15 | 11, 12, 13, 14 | syl3anc 1373 | . . . . 5 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↔ (𝑥 ∈ 𝐴 ∧ (𝐺‘𝑥) ≠ 0))) |
| 16 | 15 | simplbda 499 | . . . 4 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → (𝐺‘𝑥) ≠ 0) |
| 17 | 7, 9, 16 | redivcld 12010 | . . 3 ⊢ (((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) ∧ 𝑥 ∈ (𝐺 supp 0)) → ((𝐹‘𝑥) / (𝐺‘𝑥)) ∈ ℝ) |
| 18 | 17 | fmpttd 7087 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℝ) |
| 19 | id 22 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℝ) | |
| 20 | ax-resscn 11125 | . . . . . . 7 ⊢ ℝ ⊆ ℂ | |
| 21 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐹:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 22 | 19, 21 | fssd 6705 | . . . . 5 ⊢ (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ) |
| 23 | id 22 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℝ) | |
| 24 | 20 | a1i 11 | . . . . . 6 ⊢ (𝐺:𝐴⟶ℝ → ℝ ⊆ ℂ) |
| 25 | 23, 24 | fssd 6705 | . . . . 5 ⊢ (𝐺:𝐴⟶ℝ → 𝐺:𝐴⟶ℂ) |
| 26 | id 22 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 27 | 22, 25, 26 | 3anim123i 1151 | . . . 4 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉)) |
| 28 | fdivmpt 48529 | . . . 4 ⊢ ((𝐹:𝐴⟶ℂ ∧ 𝐺:𝐴⟶ℂ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 29 | 27, 28 | syl 17 | . . 3 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺) = (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) |
| 30 | 29 | feq1d 6670 | . 2 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → ((𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ ↔ (𝑥 ∈ (𝐺 supp 0) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))):(𝐺 supp 0)⟶ℝ)) |
| 31 | 18, 30 | mpbird 257 | 1 ⊢ ((𝐹:𝐴⟶ℝ ∧ 𝐺:𝐴⟶ℝ ∧ 𝐴 ∈ 𝑉) → (𝐹 /f 𝐺):(𝐺 supp 0)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3914 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 supp csupp 8139 ℂcc 11066 ℝcr 11067 0cc0 11068 / cdiv 11835 /f cfdiv 48526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-supp 8140 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-fdiv 48527 |
| This theorem is referenced by: refdivpm 48533 elbigolo1 48546 |
| Copyright terms: Public domain | W3C validator |