MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2hash Structured version   Visualization version   GIF version

Theorem symg2hash 18512
Description: The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2hash ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)

Proof of Theorem symg2hash
StepHypRef Expression
1 symg2bas.0 . . . 4 𝐴 = {𝐼, 𝐽}
2 prfi 8777 . . . 4 {𝐼, 𝐽} ∈ Fin
31, 2eqeltri 2886 . . 3 𝐴 ∈ Fin
4 symg1bas.1 . . . 4 𝐺 = (SymGrp‘𝐴)
5 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
64, 5symghash 18498 . . 3 (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴)))
73, 6ax-mp 5 . 2 (♯‘𝐵) = (!‘(♯‘𝐴))
81fveq2i 6648 . . . . 5 (♯‘𝐴) = (♯‘{𝐼, 𝐽})
9 elex 3459 . . . . . . 7 (𝐼𝑉𝐼 ∈ V)
10 elex 3459 . . . . . . 7 (𝐽𝑊𝐽 ∈ V)
11 id 22 . . . . . . 7 (𝐼𝐽𝐼𝐽)
129, 10, 113anim123i 1148 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽))
13 hashprb 13754 . . . . . 6 ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2)
1412, 13sylib 221 . . . . 5 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘{𝐼, 𝐽}) = 2)
158, 14syl5eq 2845 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐴) = 2)
1615fveq2d 6649 . . 3 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = (!‘2))
17 fac2 13635 . . 3 (!‘2) = 2
1816, 17eqtrdi 2849 . 2 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = 2)
197, 18syl5eq 2845 1 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  {cpr 4527  cfv 6324  Fincfn 8492  2c2 11680  !cfa 13629  chash 13686  Basecbs 16475  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-seq 13365  df-fac 13630  df-bc 13659  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-tset 16576  df-efmnd 18026  df-symg 18488
This theorem is referenced by:  symg2bas  18513
  Copyright terms: Public domain W3C validator