MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2hash Structured version   Visualization version   GIF version

Theorem symg2hash 19346
Description: The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2hash ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)

Proof of Theorem symg2hash
StepHypRef Expression
1 symg2bas.0 . . . 4 𝐴 = {𝐼, 𝐽}
2 prfi 9347 . . . 4 {𝐼, 𝐽} ∈ Fin
31, 2eqeltri 2825 . . 3 𝐴 ∈ Fin
4 symg1bas.1 . . . 4 𝐺 = (SymGrp‘𝐴)
5 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
64, 5symghash 19332 . . 3 (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴)))
73, 6ax-mp 5 . 2 (♯‘𝐵) = (!‘(♯‘𝐴))
81fveq2i 6900 . . . . 5 (♯‘𝐴) = (♯‘{𝐼, 𝐽})
9 elex 3490 . . . . . . 7 (𝐼𝑉𝐼 ∈ V)
10 elex 3490 . . . . . . 7 (𝐽𝑊𝐽 ∈ V)
11 id 22 . . . . . . 7 (𝐼𝐽𝐼𝐽)
129, 10, 113anim123i 1149 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽))
13 hashprb 14389 . . . . . 6 ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2)
1412, 13sylib 217 . . . . 5 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘{𝐼, 𝐽}) = 2)
158, 14eqtrid 2780 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐴) = 2)
1615fveq2d 6901 . . 3 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = (!‘2))
17 fac2 14271 . . 3 (!‘2) = 2
1816, 17eqtrdi 2784 . 2 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = 2)
197, 18eqtrid 2780 1 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1534  wcel 2099  wne 2937  Vcvv 3471  {cpr 4631  cfv 6548  Fincfn 8964  2c2 12298  !cfa 14265  chash 14322  Basecbs 17180  SymGrpcsymg 19321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-oadd 8491  df-er 8725  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9925  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-fz 13518  df-seq 14000  df-fac 14266  df-bc 14295  df-hash 14323  df-struct 17116  df-sets 17133  df-slot 17151  df-ndx 17163  df-base 17181  df-ress 17210  df-plusg 17246  df-tset 17252  df-efmnd 18821  df-symg 19322
This theorem is referenced by:  symg2bas  19347
  Copyright terms: Public domain W3C validator