MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symg2hash Structured version   Visualization version   GIF version

Theorem symg2hash 19299
Description: The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.)
Hypotheses
Ref Expression
symg1bas.1 𝐺 = (SymGrp‘𝐴)
symg1bas.2 𝐵 = (Base‘𝐺)
symg2bas.0 𝐴 = {𝐼, 𝐽}
Assertion
Ref Expression
symg2hash ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)

Proof of Theorem symg2hash
StepHypRef Expression
1 symg2bas.0 . . . 4 𝐴 = {𝐼, 𝐽}
2 prfi 9203 . . . 4 {𝐼, 𝐽} ∈ Fin
31, 2eqeltri 2827 . . 3 𝐴 ∈ Fin
4 symg1bas.1 . . . 4 𝐺 = (SymGrp‘𝐴)
5 symg1bas.2 . . . 4 𝐵 = (Base‘𝐺)
64, 5symghash 19285 . . 3 (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴)))
73, 6ax-mp 5 . 2 (♯‘𝐵) = (!‘(♯‘𝐴))
81fveq2i 6820 . . . . 5 (♯‘𝐴) = (♯‘{𝐼, 𝐽})
9 elex 3457 . . . . . . 7 (𝐼𝑉𝐼 ∈ V)
10 elex 3457 . . . . . . 7 (𝐽𝑊𝐽 ∈ V)
11 id 22 . . . . . . 7 (𝐼𝐽𝐼𝐽)
129, 10, 113anim123i 1151 . . . . . 6 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽))
13 hashprb 14299 . . . . . 6 ((𝐼 ∈ V ∧ 𝐽 ∈ V ∧ 𝐼𝐽) ↔ (♯‘{𝐼, 𝐽}) = 2)
1412, 13sylib 218 . . . . 5 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘{𝐼, 𝐽}) = 2)
158, 14eqtrid 2778 . . . 4 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐴) = 2)
1615fveq2d 6821 . . 3 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = (!‘2))
17 fac2 14181 . . 3 (!‘2) = 2
1816, 17eqtrdi 2782 . 2 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (!‘(♯‘𝐴)) = 2)
197, 18eqtrid 2778 1 ((𝐼𝑉𝐽𝑊𝐼𝐽) → (♯‘𝐵) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  {cpr 4573  cfv 6476  Fincfn 8864  2c2 12175  !cfa 14175  chash 14232  Basecbs 17115  SymGrpcsymg 19276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-dju 9789  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-xnn0 12450  df-z 12464  df-uz 12728  df-fz 13403  df-seq 13904  df-fac 14176  df-bc 14205  df-hash 14233  df-struct 17053  df-sets 17070  df-slot 17088  df-ndx 17100  df-base 17116  df-ress 17137  df-plusg 17169  df-tset 17175  df-efmnd 18772  df-symg 19277
This theorem is referenced by:  symg2bas  19300
  Copyright terms: Public domain W3C validator