MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 14576
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 14557 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 14557 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
3 eqwrd 14437 . . . . 5 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
41, 2, 3syl2an 596 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
543ad2ant2 1134 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
6 simp2l 1199 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
7 simpl 483 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
8 lencl 14413 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98adantr 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
10 simpl 483 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑀 ≤ (♯‘𝑊))
117, 9, 103anim123i 1151 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
12 elfz2nn0 13524 . . . . . . 7 (𝑀 ∈ (0...(♯‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
1311, 12sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ (0...(♯‘𝑊)))
14 pfxlen 14563 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
156, 13, 14syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
16 simp2r 1200 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
17 simpr 485 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
18 lencl 14413 . . . . . . . . 9 (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0)
1918adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑈) ∈ ℕ0)
20 simpr 485 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑁 ≤ (♯‘𝑈))
2117, 19, 203anim123i 1151 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
22 elfz2nn0 13524 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
2321, 22sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ (0...(♯‘𝑈)))
24 pfxlen 14563 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2516, 23, 24syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2615, 25eqeq12d 2752 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
2726anbi1d 630 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
2815adantr 481 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
2928oveq2d 7369 . . . . . 6 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(♯‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3029raleqdv 3311 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
316ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
3213ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(♯‘𝑊)))
33 simpr 485 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
34 pfxfv 14562 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3531, 32, 33, 34syl3anc 1371 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3616ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
3723ad2antrr 724 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(♯‘𝑈)))
38 oveq2 7361 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
3938eleq2d 2823 . . . . . . . . . 10 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4039adantl 482 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4140biimpa 477 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
42 pfxfv 14562 . . . . . . . 8 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4336, 37, 41, 42syl3anc 1371 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4435, 43eqeq12d 2752 . . . . . 6 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
4544ralbidva 3170 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4630, 45bitrd 278 . . . 4 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4746pm5.32da 579 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
485, 27, 473bitrd 304 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
49483com12 1123 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3062   class class class wbr 5103  cfv 6493  (class class class)co 7353  0cc0 11047  cle 11186  0cn0 12409  ...cfz 13416  ..^cfzo 13559  chash 14222  Word cword 14394   prefix cpfx 14550
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5240  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-int 4906  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7309  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-1st 7917  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-1o 8408  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9871  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-le 11191  df-sub 11383  df-neg 11384  df-nn 12150  df-n0 12410  df-z 12496  df-uz 12760  df-fz 13417  df-fzo 13560  df-hash 14223  df-word 14395  df-substr 14521  df-pfx 14551
This theorem is referenced by:  pfxsuffeqwrdeq  14578  clwlkclwwlkf1lem2  28835
  Copyright terms: Public domain W3C validator