MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 14048
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 14029 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 14029 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
3 eqwrd 13899 . . . . 5 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
41, 2, 3syl2an 595 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
543ad2ant2 1128 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
6 simp2l 1193 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
7 simpl 483 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
8 lencl 13873 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98adantr 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
10 simpl 483 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑀 ≤ (♯‘𝑊))
117, 9, 103anim123i 1145 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
12 elfz2nn0 12988 . . . . . . 7 (𝑀 ∈ (0...(♯‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
1311, 12sylibr 235 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ (0...(♯‘𝑊)))
14 pfxlen 14035 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
156, 13, 14syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
16 simp2r 1194 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
17 simpr 485 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
18 lencl 13873 . . . . . . . . 9 (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0)
1918adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑈) ∈ ℕ0)
20 simpr 485 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑁 ≤ (♯‘𝑈))
2117, 19, 203anim123i 1145 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
22 elfz2nn0 12988 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
2321, 22sylibr 235 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ (0...(♯‘𝑈)))
24 pfxlen 14035 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2516, 23, 24syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2615, 25eqeq12d 2842 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
2726anbi1d 629 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
2815adantr 481 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
2928oveq2d 7164 . . . . . 6 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(♯‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3029raleqdv 3421 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
316ad2antrr 722 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
3213ad2antrr 722 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(♯‘𝑊)))
33 simpr 485 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
34 pfxfv 14034 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3531, 32, 33, 34syl3anc 1365 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3616ad2antrr 722 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
3723ad2antrr 722 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(♯‘𝑈)))
38 oveq2 7156 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
3938eleq2d 2903 . . . . . . . . . 10 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4039adantl 482 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4140biimpa 477 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
42 pfxfv 14034 . . . . . . . 8 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4336, 37, 41, 42syl3anc 1365 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4435, 43eqeq12d 2842 . . . . . 6 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
4544ralbidva 3201 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4630, 45bitrd 280 . . . 4 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4746pm5.32da 579 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
485, 27, 473bitrd 306 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
49483com12 1117 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1081   = wceq 1530  wcel 2107  wral 3143   class class class wbr 5063  cfv 6352  (class class class)co 7148  0cc0 10526  cle 10665  0cn0 11886  ...cfz 12882  ..^cfzo 13023  chash 13680  Word cword 13851   prefix cpfx 14022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-1st 7680  df-2nd 7681  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-1o 8093  df-oadd 8097  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-fin 8502  df-card 9357  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-substr 13993  df-pfx 14023
This theorem is referenced by:  pfxsuffeqwrdeq  14050  clwlkclwwlkf1lem2  27697
  Copyright terms: Public domain W3C validator