MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 14734
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 14715 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 14715 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
3 eqwrd 14595 . . . . 5 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
41, 2, 3syl2an 596 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
543ad2ant2 1135 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
6 simp2l 1200 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
7 simpl 482 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
8 lencl 14571 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
10 simpl 482 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑀 ≤ (♯‘𝑊))
117, 9, 103anim123i 1152 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
12 elfz2nn0 13658 . . . . . . 7 (𝑀 ∈ (0...(♯‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
1311, 12sylibr 234 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ (0...(♯‘𝑊)))
14 pfxlen 14721 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
156, 13, 14syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
16 simp2r 1201 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
17 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
18 lencl 14571 . . . . . . . . 9 (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0)
1918adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑈) ∈ ℕ0)
20 simpr 484 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑁 ≤ (♯‘𝑈))
2117, 19, 203anim123i 1152 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
22 elfz2nn0 13658 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
2321, 22sylibr 234 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ (0...(♯‘𝑈)))
24 pfxlen 14721 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2516, 23, 24syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2615, 25eqeq12d 2753 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
2726anbi1d 631 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
2815adantr 480 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
2928oveq2d 7447 . . . . . 6 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(♯‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3029raleqdv 3326 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
316ad2antrr 726 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
3213ad2antrr 726 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(♯‘𝑊)))
33 simpr 484 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
34 pfxfv 14720 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3531, 32, 33, 34syl3anc 1373 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3616ad2antrr 726 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
3723ad2antrr 726 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(♯‘𝑈)))
38 oveq2 7439 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
3938eleq2d 2827 . . . . . . . . . 10 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4039adantl 481 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4140biimpa 476 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
42 pfxfv 14720 . . . . . . . 8 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4336, 37, 41, 42syl3anc 1373 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4435, 43eqeq12d 2753 . . . . . 6 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
4544ralbidva 3176 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4630, 45bitrd 279 . . . 4 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4746pm5.32da 579 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
485, 27, 473bitrd 305 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
49483com12 1124 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  cle 11296  0cn0 12526  ...cfz 13547  ..^cfzo 13694  chash 14369  Word cword 14552   prefix cpfx 14708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-substr 14679  df-pfx 14709
This theorem is referenced by:  pfxsuffeqwrdeq  14736  clwlkclwwlkf1lem2  30024
  Copyright terms: Public domain W3C validator