MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 14648
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 14629 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 14629 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
3 eqwrd 14509 . . . . 5 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
41, 2, 3syl2an 595 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
543ad2ant2 1131 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
6 simp2l 1196 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
7 simpl 482 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
8 lencl 14485 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
10 simpl 482 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑀 ≤ (♯‘𝑊))
117, 9, 103anim123i 1148 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
12 elfz2nn0 13593 . . . . . . 7 (𝑀 ∈ (0...(♯‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
1311, 12sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ (0...(♯‘𝑊)))
14 pfxlen 14635 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
156, 13, 14syl2anc 583 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
16 simp2r 1197 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
17 simpr 484 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
18 lencl 14485 . . . . . . . . 9 (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0)
1918adantl 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑈) ∈ ℕ0)
20 simpr 484 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑁 ≤ (♯‘𝑈))
2117, 19, 203anim123i 1148 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
22 elfz2nn0 13593 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
2321, 22sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ (0...(♯‘𝑈)))
24 pfxlen 14635 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2516, 23, 24syl2anc 583 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2615, 25eqeq12d 2740 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
2726anbi1d 629 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
2815adantr 480 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
2928oveq2d 7418 . . . . . 6 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(♯‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3029raleqdv 3317 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
316ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
3213ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(♯‘𝑊)))
33 simpr 484 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
34 pfxfv 14634 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3531, 32, 33, 34syl3anc 1368 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3616ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
3723ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(♯‘𝑈)))
38 oveq2 7410 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
3938eleq2d 2811 . . . . . . . . . 10 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4039adantl 481 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4140biimpa 476 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
42 pfxfv 14634 . . . . . . . 8 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4336, 37, 41, 42syl3anc 1368 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4435, 43eqeq12d 2740 . . . . . 6 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
4544ralbidva 3167 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4630, 45bitrd 279 . . . 4 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4746pm5.32da 578 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
485, 27, 473bitrd 305 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
49483com12 1120 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053   class class class wbr 5139  cfv 6534  (class class class)co 7402  0cc0 11107  cle 11248  0cn0 12471  ...cfz 13485  ..^cfzo 13628  chash 14291  Word cword 14466   prefix cpfx 14622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-card 9931  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13486  df-fzo 13629  df-hash 14292  df-word 14467  df-substr 14593  df-pfx 14623
This theorem is referenced by:  pfxsuffeqwrdeq  14650  clwlkclwwlkf1lem2  29752
  Copyright terms: Public domain W3C validator