MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxeq Structured version   Visualization version   GIF version

Theorem pfxeq 14409
Description: The prefixes of two words are equal iff they have the same length and the same symbols at each position. (Contributed by Alexander van der Vekens, 7-Aug-2018.) (Revised by AV, 4-May-2020.)
Assertion
Ref Expression
pfxeq (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Distinct variable groups:   𝑖,𝑀   𝑖,𝑁   𝑈,𝑖   𝑖,𝑉   𝑖,𝑊

Proof of Theorem pfxeq
StepHypRef Expression
1 pfxcl 14390 . . . . 5 (𝑊 ∈ Word 𝑉 → (𝑊 prefix 𝑀) ∈ Word 𝑉)
2 pfxcl 14390 . . . . 5 (𝑈 ∈ Word 𝑉 → (𝑈 prefix 𝑁) ∈ Word 𝑉)
3 eqwrd 14260 . . . . 5 (((𝑊 prefix 𝑀) ∈ Word 𝑉 ∧ (𝑈 prefix 𝑁) ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
41, 2, 3syl2an 596 . . . 4 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
543ad2ant2 1133 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
6 simp2l 1198 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑊 ∈ Word 𝑉)
7 simpl 483 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑀 ∈ ℕ0)
8 lencl 14236 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
98adantr 481 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑊) ∈ ℕ0)
10 simpl 483 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑀 ≤ (♯‘𝑊))
117, 9, 103anim123i 1150 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
12 elfz2nn0 13347 . . . . . . 7 (𝑀 ∈ (0...(♯‘𝑊)) ↔ (𝑀 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0𝑀 ≤ (♯‘𝑊)))
1311, 12sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑀 ∈ (0...(♯‘𝑊)))
14 pfxlen 14396 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
156, 13, 14syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
16 simp2r 1199 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑈 ∈ Word 𝑉)
17 simpr 485 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
18 lencl 14236 . . . . . . . . 9 (𝑈 ∈ Word 𝑉 → (♯‘𝑈) ∈ ℕ0)
1918adantl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) → (♯‘𝑈) ∈ ℕ0)
20 simpr 485 . . . . . . . 8 ((𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈)) → 𝑁 ≤ (♯‘𝑈))
2117, 19, 203anim123i 1150 . . . . . . 7 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
22 elfz2nn0 13347 . . . . . . 7 (𝑁 ∈ (0...(♯‘𝑈)) ↔ (𝑁 ∈ ℕ0 ∧ (♯‘𝑈) ∈ ℕ0𝑁 ≤ (♯‘𝑈)))
2321, 22sylibr 233 . . . . . 6 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → 𝑁 ∈ (0...(♯‘𝑈)))
24 pfxlen 14396 . . . . . 6 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2516, 23, 24syl2anc 584 . . . . 5 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (♯‘(𝑈 prefix 𝑁)) = 𝑁)
2615, 25eqeq12d 2754 . . . 4 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ↔ 𝑀 = 𝑁))
2726anbi1d 630 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → (((♯‘(𝑊 prefix 𝑀)) = (♯‘(𝑈 prefix 𝑁)) ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖))))
2815adantr 481 . . . . . . 7 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (♯‘(𝑊 prefix 𝑀)) = 𝑀)
2928oveq2d 7291 . . . . . 6 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (0..^(♯‘(𝑊 prefix 𝑀))) = (0..^𝑀))
3029raleqdv 3348 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)))
316ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑊 ∈ Word 𝑉)
3213ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...(♯‘𝑊)))
33 simpr 485 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑀))
34 pfxfv 14395 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑀 ∈ (0...(♯‘𝑊)) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3531, 32, 33, 34syl3anc 1370 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑊 prefix 𝑀)‘𝑖) = (𝑊𝑖))
3616ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ Word 𝑉)
3723ad2antrr 723 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑁 ∈ (0...(♯‘𝑈)))
38 oveq2 7283 . . . . . . . . . . 11 (𝑀 = 𝑁 → (0..^𝑀) = (0..^𝑁))
3938eleq2d 2824 . . . . . . . . . 10 (𝑀 = 𝑁 → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4039adantl 482 . . . . . . . . 9 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (𝑖 ∈ (0..^𝑀) ↔ 𝑖 ∈ (0..^𝑁)))
4140biimpa 477 . . . . . . . 8 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0..^𝑁))
42 pfxfv 14395 . . . . . . . 8 ((𝑈 ∈ Word 𝑉𝑁 ∈ (0...(♯‘𝑈)) ∧ 𝑖 ∈ (0..^𝑁)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4336, 37, 41, 42syl3anc 1370 . . . . . . 7 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑈 prefix 𝑁)‘𝑖) = (𝑈𝑖))
4435, 43eqeq12d 2754 . . . . . 6 (((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) ∧ 𝑖 ∈ (0..^𝑀)) → (((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ (𝑊𝑖) = (𝑈𝑖)))
4544ralbidva 3111 . . . . 5 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^𝑀)((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4630, 45bitrd 278 . . . 4 ((((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) ∧ 𝑀 = 𝑁) → (∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖) ↔ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖)))
4746pm5.32da 579 . . 3 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^(♯‘(𝑊 prefix 𝑀)))((𝑊 prefix 𝑀)‘𝑖) = ((𝑈 prefix 𝑁)‘𝑖)) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
485, 27, 473bitrd 305 . 2 (((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
49483com12 1122 1 (((𝑊 ∈ Word 𝑉𝑈 ∈ Word 𝑉) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑀 ≤ (♯‘𝑊) ∧ 𝑁 ≤ (♯‘𝑈))) → ((𝑊 prefix 𝑀) = (𝑈 prefix 𝑁) ↔ (𝑀 = 𝑁 ∧ ∀𝑖 ∈ (0..^𝑀)(𝑊𝑖) = (𝑈𝑖))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  cle 11010  0cn0 12233  ...cfz 13239  ..^cfzo 13382  chash 14044  Word cword 14217   prefix cpfx 14383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-substr 14354  df-pfx 14384
This theorem is referenced by:  pfxsuffeqwrdeq  14411  clwlkclwwlkf1lem2  28369
  Copyright terms: Public domain W3C validator