MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfz0fzfz0 Structured version   Visualization version   GIF version

Theorem elfz0fzfz0 13230
Description: A member of a finite set of sequential nonnegative integers is a member of a finite set of sequential nonnegative integers with a member of a finite set of sequential nonnegative integers starting at the upper bound of the first interval. (Contributed by Alexander van der Vekens, 27-May-2018.)
Assertion
Ref Expression
elfz0fzfz0 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))

Proof of Theorem elfz0fzfz0
StepHypRef Expression
1 elfz2nn0 13216 . . . 4 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
2 elfz2 13115 . . . . . 6 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
3 nn0re 12112 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
4 nn0re 12112 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
5 zre 12193 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
63, 4, 53anim123i 1153 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
763expa 1120 . . . . . . . . . . . . . . . 16 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ))
8 letr 10939 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
97, 8syl 17 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → 𝑀𝑁))
10 simplll 775 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀 ∈ ℕ0)
11 simpr 488 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℤ)
1211adantr 484 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℤ)
13 elnn0z 12202 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
14 0red 10849 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 0 ∈ ℝ)
15 zre 12193 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1615adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
175adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
18 letr 10939 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((0 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
1914, 16, 17, 18syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((0 ≤ 𝑀𝑀𝑁) → 0 ≤ 𝑁))
2019exp4b 434 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑀 ∈ ℤ → (𝑁 ∈ ℤ → (0 ≤ 𝑀 → (𝑀𝑁 → 0 ≤ 𝑁))))
2120com23 86 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑀 ∈ ℤ → (0 ≤ 𝑀 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁))))
2221imp 410 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑀 ∈ ℤ ∧ 0 ≤ 𝑀) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2313, 22sylbi 220 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℕ0 → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2423adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝑁 → 0 ≤ 𝑁)))
2524imp 410 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → 0 ≤ 𝑁))
2625imp 410 . . . . . . . . . . . . . . . . . 18 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 0 ≤ 𝑁)
27 elnn0z 12202 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
2812, 26, 27sylanbrc 586 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑁 ∈ ℕ0)
29 simpr 488 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → 𝑀𝑁)
3010, 28, 293jca 1130 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) ∧ 𝑀𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
3130ex 416 . . . . . . . . . . . . . . 15 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
329, 31syld 47 . . . . . . . . . . . . . 14 (((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) ∧ 𝑁 ∈ ℤ) → ((𝑀𝐿𝐿𝑁) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
3332exp4b 434 . . . . . . . . . . . . 13 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ ℤ → (𝑀𝐿 → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
3433com23 86 . . . . . . . . . . . 12 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑀𝐿 → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))))
35343impia 1119 . . . . . . . . . . 11 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ ℤ → (𝐿𝑁 → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3635com13 88 . . . . . . . . . 10 (𝐿𝑁 → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3736adantr 484 . . . . . . . . 9 ((𝐿𝑁𝑁𝑋) → (𝑁 ∈ ℤ → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
3837com12 32 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
39383ad2ant3 1137 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐿𝑁𝑁𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))))
4039imp 410 . . . . . 6 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
412, 40sylbi 220 . . . . 5 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4241com12 32 . . . 4 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
431, 42sylbi 220 . . 3 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁)))
4443imp 410 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
45 elfz2nn0 13216 . 2 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
4644, 45sylibr 237 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 𝑀 ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089  wcel 2111   class class class wbr 5062  (class class class)co 7222  cr 10741  0cc0 10742  cle 10881  0cn0 12103  cz 12189  ...cfz 13108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818  ax-pre-mulgt0 10819
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-pss 3894  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4829  df-iun 4915  df-br 5063  df-opab 5125  df-mpt 5145  df-tr 5171  df-id 5464  df-eprel 5469  df-po 5477  df-so 5478  df-fr 5518  df-we 5520  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-pred 6169  df-ord 6225  df-on 6226  df-lim 6227  df-suc 6228  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-om 7654  df-1st 7770  df-2nd 7771  df-wrecs 8056  df-recs 8117  df-rdg 8155  df-er 8400  df-en 8636  df-dom 8637  df-sdom 8638  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-sub 11077  df-neg 11078  df-nn 11844  df-n0 12104  df-z 12190  df-uz 12452  df-fz 13109
This theorem is referenced by:  pfxccatin12lem2c  14308
  Copyright terms: Public domain W3C validator