![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ngpinvds | Structured version Visualization version GIF version |
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
ngpinvds.x | ⊢ 𝑋 = (Base‘𝐺) |
ngpinvds.i | ⊢ 𝐼 = (invg‘𝐺) |
ngpinvds.d | ⊢ 𝐷 = (dist‘𝐺) |
Ref | Expression |
---|---|
ngpinvds | ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpinvds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
2 | eqid 2780 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
3 | ngpinvds.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
4 | simplr 757 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
5 | simprr 761 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
6 | simprl 759 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
7 | 1, 2, 3, 4, 5, 6 | ablsub2inv 18701 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)) = (𝐴(-g‘𝐺)𝐵)) |
8 | 7 | fveq2d 6508 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴))) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
9 | simpll 755 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
10 | ngpgrp 22926 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
11 | 9, 10 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
12 | 1, 3 | grpinvcl 17950 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
13 | 11, 6, 12 | syl2anc 576 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐴) ∈ 𝑋) |
14 | 1, 3 | grpinvcl 17950 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋) → (𝐼‘𝐵) ∈ 𝑋) |
15 | 11, 5, 14 | syl2anc 576 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐵) ∈ 𝑋) |
16 | eqid 2780 | . . . 4 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
17 | ngpinvds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
18 | 16, 1, 2, 17 | ngpdsr 22932 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ (𝐼‘𝐵) ∈ 𝑋) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
19 | 9, 13, 15, 18 | syl3anc 1352 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
20 | 16, 1, 2, 17 | ngpds 22931 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
21 | 9, 6, 5, 20 | syl3anc 1352 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
22 | 8, 19, 21 | 3eqtr4d 2826 | 1 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ‘cfv 6193 (class class class)co 6982 Basecbs 16345 distcds 16436 Grpcgrp 17903 invgcminusg 17904 -gcsg 17905 Abelcabl 18679 normcnm 22904 NrmGrpcngp 22905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 ax-cnex 10397 ax-resscn 10398 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-mulcom 10405 ax-addass 10406 ax-mulass 10407 ax-distr 10408 ax-i2m1 10409 ax-1ne0 10410 ax-1rid 10411 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 ax-pre-lttri 10415 ax-pre-lttrn 10416 ax-pre-ltadd 10417 ax-pre-mulgt0 10418 ax-pre-sup 10419 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-pss 3847 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-tp 4449 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-tr 5036 df-id 5316 df-eprel 5321 df-po 5330 df-so 5331 df-fr 5370 df-we 5372 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-pred 5991 df-ord 6037 df-on 6038 df-lim 6039 df-suc 6040 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-mpo 6987 df-om 7403 df-1st 7507 df-2nd 7508 df-wrecs 7756 df-recs 7818 df-rdg 7856 df-er 8095 df-map 8214 df-en 8313 df-dom 8314 df-sdom 8315 df-sup 8707 df-inf 8708 df-pnf 10482 df-mnf 10483 df-xr 10484 df-ltxr 10485 df-le 10486 df-sub 10678 df-neg 10679 df-div 11105 df-nn 11446 df-2 11509 df-n0 11714 df-z 11800 df-uz 12065 df-q 12169 df-rp 12211 df-xneg 12330 df-xadd 12331 df-xmul 12332 df-0g 16577 df-topgen 16579 df-mgm 17722 df-sgrp 17764 df-mnd 17775 df-grp 17906 df-minusg 17907 df-sbg 17908 df-cmn 18680 df-abl 18681 df-psmet 20254 df-xmet 20255 df-met 20256 df-bl 20257 df-mopn 20258 df-top 21221 df-topon 21238 df-topsp 21260 df-bases 21273 df-xms 22648 df-ms 22649 df-nm 22910 df-ngp 22911 |
This theorem is referenced by: ngptgp 22963 |
Copyright terms: Public domain | W3C validator |