MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpinvds Structured version   Visualization version   GIF version

Theorem ngpinvds 22940
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngpinvds.x 𝑋 = (Base‘𝐺)
ngpinvds.i 𝐼 = (invg𝐺)
ngpinvds.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpinvds (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))

Proof of Theorem ngpinvds
StepHypRef Expression
1 ngpinvds.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2780 . . . 4 (-g𝐺) = (-g𝐺)
3 ngpinvds.i . . . 4 𝐼 = (invg𝐺)
4 simplr 757 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
5 simprr 761 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simprl 759 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
71, 2, 3, 4, 5, 6ablsub2inv 18701 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐵)(-g𝐺)(𝐼𝐴)) = (𝐴(-g𝐺)𝐵))
87fveq2d 6508 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
9 simpll 755 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ NrmGrp)
10 ngpgrp 22926 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
119, 10syl 17 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
121, 3grpinvcl 17950 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
1311, 6, 12syl2anc 576 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐴) ∈ 𝑋)
141, 3grpinvcl 17950 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝐼𝐵) ∈ 𝑋)
1511, 5, 14syl2anc 576 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐵) ∈ 𝑋)
16 eqid 2780 . . . 4 (norm‘𝐺) = (norm‘𝐺)
17 ngpinvds.d . . . 4 𝐷 = (dist‘𝐺)
1816, 1, 2, 17ngpdsr 22932 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝐵) ∈ 𝑋) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
199, 13, 15, 18syl3anc 1352 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
2016, 1, 2, 17ngpds 22931 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
219, 6, 5, 20syl3anc 1352 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
228, 19, 213eqtr4d 2826 1 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  cfv 6193  (class class class)co 6982  Basecbs 16345  distcds 16436  Grpcgrp 17903  invgcminusg 17904  -gcsg 17905  Abelcabl 18679  normcnm 22904  NrmGrpcngp 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-cnex 10397  ax-resscn 10398  ax-1cn 10399  ax-icn 10400  ax-addcl 10401  ax-addrcl 10402  ax-mulcl 10403  ax-mulrcl 10404  ax-mulcom 10405  ax-addass 10406  ax-mulass 10407  ax-distr 10408  ax-i2m1 10409  ax-1ne0 10410  ax-1rid 10411  ax-rnegex 10412  ax-rrecex 10413  ax-cnre 10414  ax-pre-lttri 10415  ax-pre-lttrn 10416  ax-pre-ltadd 10417  ax-pre-mulgt0 10418  ax-pre-sup 10419
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-sup 8707  df-inf 8708  df-pnf 10482  df-mnf 10483  df-xr 10484  df-ltxr 10485  df-le 10486  df-sub 10678  df-neg 10679  df-div 11105  df-nn 11446  df-2 11509  df-n0 11714  df-z 11800  df-uz 12065  df-q 12169  df-rp 12211  df-xneg 12330  df-xadd 12331  df-xmul 12332  df-0g 16577  df-topgen 16579  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-grp 17906  df-minusg 17907  df-sbg 17908  df-cmn 18680  df-abl 18681  df-psmet 20254  df-xmet 20255  df-met 20256  df-bl 20257  df-mopn 20258  df-top 21221  df-topon 21238  df-topsp 21260  df-bases 21273  df-xms 22648  df-ms 22649  df-nm 22910  df-ngp 22911
This theorem is referenced by:  ngptgp  22963
  Copyright terms: Public domain W3C validator