MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpinvds Structured version   Visualization version   GIF version

Theorem ngpinvds 23769
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngpinvds.x 𝑋 = (Base‘𝐺)
ngpinvds.i 𝐼 = (invg𝐺)
ngpinvds.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpinvds (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))

Proof of Theorem ngpinvds
StepHypRef Expression
1 ngpinvds.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2738 . . . 4 (-g𝐺) = (-g𝐺)
3 ngpinvds.i . . . 4 𝐼 = (invg𝐺)
4 simplr 766 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
5 simprr 770 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simprl 768 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
71, 2, 3, 4, 5, 6ablsub2inv 19412 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐵)(-g𝐺)(𝐼𝐴)) = (𝐴(-g𝐺)𝐵))
87fveq2d 6778 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
9 simpll 764 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ NrmGrp)
10 ngpgrp 23755 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
119, 10syl 17 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
121, 3grpinvcl 18627 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
1311, 6, 12syl2anc 584 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐴) ∈ 𝑋)
141, 3grpinvcl 18627 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝐼𝐵) ∈ 𝑋)
1511, 5, 14syl2anc 584 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐵) ∈ 𝑋)
16 eqid 2738 . . . 4 (norm‘𝐺) = (norm‘𝐺)
17 ngpinvds.d . . . 4 𝐷 = (dist‘𝐺)
1816, 1, 2, 17ngpdsr 23761 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝐵) ∈ 𝑋) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
199, 13, 15, 18syl3anc 1370 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
2016, 1, 2, 17ngpds 23760 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
219, 6, 5, 20syl3anc 1370 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
228, 19, 213eqtr4d 2788 1 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  distcds 16971  Grpcgrp 18577  invgcminusg 18578  -gcsg 18579  Abelcabl 19387  normcnm 23732  NrmGrpcngp 23733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-0g 17152  df-topgen 17154  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-cmn 19388  df-abl 19389  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-xms 23473  df-ms 23474  df-nm 23738  df-ngp 23739
This theorem is referenced by:  ngptgp  23792
  Copyright terms: Public domain W3C validator