| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngpinvds | Structured version Visualization version GIF version | ||
| Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngpinvds.x | ⊢ 𝑋 = (Base‘𝐺) |
| ngpinvds.i | ⊢ 𝐼 = (invg‘𝐺) |
| ngpinvds.d | ⊢ 𝐷 = (dist‘𝐺) |
| Ref | Expression |
|---|---|
| ngpinvds | ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpinvds.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | eqid 2736 | . . . 4 ⊢ (-g‘𝐺) = (-g‘𝐺) | |
| 3 | ngpinvds.i | . . . 4 ⊢ 𝐼 = (invg‘𝐺) | |
| 4 | simplr 768 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Abel) | |
| 5 | simprr 772 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 6 | simprl 770 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 7 | 1, 2, 3, 4, 5, 6 | ablsub2inv 19827 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)) = (𝐴(-g‘𝐺)𝐵)) |
| 8 | 7 | fveq2d 6909 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴))) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 9 | simpll 766 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ NrmGrp) | |
| 10 | ngpgrp 24613 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 11 | 9, 10 | syl 17 | . . . 4 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → 𝐺 ∈ Grp) |
| 12 | 1, 3 | grpinvcl 19006 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐼‘𝐴) ∈ 𝑋) |
| 13 | 11, 6, 12 | syl2anc 584 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐴) ∈ 𝑋) |
| 14 | 1, 3 | grpinvcl 19006 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝐵 ∈ 𝑋) → (𝐼‘𝐵) ∈ 𝑋) |
| 15 | 11, 5, 14 | syl2anc 584 | . . 3 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐼‘𝐵) ∈ 𝑋) |
| 16 | eqid 2736 | . . . 4 ⊢ (norm‘𝐺) = (norm‘𝐺) | |
| 17 | ngpinvds.d | . . . 4 ⊢ 𝐷 = (dist‘𝐺) | |
| 18 | 16, 1, 2, 17 | ngpdsr 24619 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ (𝐼‘𝐴) ∈ 𝑋 ∧ (𝐼‘𝐵) ∈ 𝑋) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
| 19 | 9, 13, 15, 18 | syl3anc 1372 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = ((norm‘𝐺)‘((𝐼‘𝐵)(-g‘𝐺)(𝐼‘𝐴)))) |
| 20 | 16, 1, 2, 17 | ngpds 24618 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 21 | 9, 6, 5, 20 | syl3anc 1372 | . 2 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g‘𝐺)𝐵))) |
| 22 | 8, 19, 21 | 3eqtr4d 2786 | 1 ⊢ (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝐼‘𝐴)𝐷(𝐼‘𝐵)) = (𝐴𝐷𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 distcds 17307 Grpcgrp 18952 invgcminusg 18953 -gcsg 18954 Abelcabl 19800 normcnm 24590 NrmGrpcngp 24591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-map 8869 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-q 12992 df-rp 13036 df-xneg 13155 df-xadd 13156 df-xmul 13157 df-0g 17487 df-topgen 17489 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-cmn 19801 df-abl 19802 df-psmet 21357 df-xmet 21358 df-met 21359 df-bl 21360 df-mopn 21361 df-top 22901 df-topon 22918 df-topsp 22940 df-bases 22954 df-xms 24331 df-ms 24332 df-nm 24596 df-ngp 24597 |
| This theorem is referenced by: ngptgp 24650 |
| Copyright terms: Public domain | W3C validator |