MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ngpinvds Structured version   Visualization version   GIF version

Theorem ngpinvds 24627
Description: Two elements are the same distance apart as their inverses. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
ngpinvds.x 𝑋 = (Base‘𝐺)
ngpinvds.i 𝐼 = (invg𝐺)
ngpinvds.d 𝐷 = (dist‘𝐺)
Assertion
Ref Expression
ngpinvds (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))

Proof of Theorem ngpinvds
StepHypRef Expression
1 ngpinvds.x . . . 4 𝑋 = (Base‘𝐺)
2 eqid 2736 . . . 4 (-g𝐺) = (-g𝐺)
3 ngpinvds.i . . . 4 𝐼 = (invg𝐺)
4 simplr 768 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Abel)
5 simprr 772 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐵𝑋)
6 simprl 770 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐴𝑋)
71, 2, 3, 4, 5, 6ablsub2inv 19827 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐵)(-g𝐺)(𝐼𝐴)) = (𝐴(-g𝐺)𝐵))
87fveq2d 6909 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
9 simpll 766 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ NrmGrp)
10 ngpgrp 24613 . . . . 5 (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp)
119, 10syl 17 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → 𝐺 ∈ Grp)
121, 3grpinvcl 19006 . . . 4 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐼𝐴) ∈ 𝑋)
1311, 6, 12syl2anc 584 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐴) ∈ 𝑋)
141, 3grpinvcl 19006 . . . 4 ((𝐺 ∈ Grp ∧ 𝐵𝑋) → (𝐼𝐵) ∈ 𝑋)
1511, 5, 14syl2anc 584 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐼𝐵) ∈ 𝑋)
16 eqid 2736 . . . 4 (norm‘𝐺) = (norm‘𝐺)
17 ngpinvds.d . . . 4 𝐷 = (dist‘𝐺)
1816, 1, 2, 17ngpdsr 24619 . . 3 ((𝐺 ∈ NrmGrp ∧ (𝐼𝐴) ∈ 𝑋 ∧ (𝐼𝐵) ∈ 𝑋) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
199, 13, 15, 18syl3anc 1372 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = ((norm‘𝐺)‘((𝐼𝐵)(-g𝐺)(𝐼𝐴))))
2016, 1, 2, 17ngpds 24618 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
219, 6, 5, 20syl3anc 1372 . 2 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → (𝐴𝐷𝐵) = ((norm‘𝐺)‘(𝐴(-g𝐺)𝐵)))
228, 19, 213eqtr4d 2786 1 (((𝐺 ∈ NrmGrp ∧ 𝐺 ∈ Abel) ∧ (𝐴𝑋𝐵𝑋)) → ((𝐼𝐴)𝐷(𝐼𝐵)) = (𝐴𝐷𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cfv 6560  (class class class)co 7432  Basecbs 17248  distcds 17307  Grpcgrp 18952  invgcminusg 18953  -gcsg 18954  Abelcabl 19800  normcnm 24590  NrmGrpcngp 24591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-0g 17487  df-topgen 17489  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-grp 18955  df-minusg 18956  df-sbg 18957  df-cmn 19801  df-abl 19802  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-xms 24331  df-ms 24332  df-nm 24596  df-ngp 24597
This theorem is referenced by:  ngptgp  24650
  Copyright terms: Public domain W3C validator