Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem2 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9914. (Contributed by NM, 6-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem2 | ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8299 | . 2 ⊢ (𝑤 ∈ ω → ((rec(ℵ, ω) ↾ ω)‘suc 𝑤) = (ℵ‘((rec(ℵ, ω) ↾ ω)‘𝑤))) | |
2 | alephfplem.1 | . . 3 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
3 | 2 | fveq1i 6805 | . 2 ⊢ (𝐻‘suc 𝑤) = ((rec(ℵ, ω) ↾ ω)‘suc 𝑤) |
4 | 2 | fveq1i 6805 | . . 3 ⊢ (𝐻‘𝑤) = ((rec(ℵ, ω) ↾ ω)‘𝑤) |
5 | 4 | fveq2i 6807 | . 2 ⊢ (ℵ‘(𝐻‘𝑤)) = (ℵ‘((rec(ℵ, ω) ↾ ω)‘𝑤)) |
6 | 1, 3, 5 | 3eqtr4g 2801 | 1 ⊢ (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻‘𝑤))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ↾ cres 5602 suc csuc 6283 ‘cfv 6458 ωcom 7744 reccrdg 8271 ℵcale 9742 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-ov 7310 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 |
This theorem is referenced by: alephfplem3 9912 alephfp 9914 |
Copyright terms: Public domain | W3C validator |