MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfplem2 Structured version   Visualization version   GIF version

Theorem alephfplem2 9845
Description: Lemma for alephfp 9848. (Contributed by NM, 6-Nov-2004.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfplem2 (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻𝑤)))
Distinct variable group:   𝑤,𝐻

Proof of Theorem alephfplem2
StepHypRef Expression
1 frsuc 8252 . 2 (𝑤 ∈ ω → ((rec(ℵ, ω) ↾ ω)‘suc 𝑤) = (ℵ‘((rec(ℵ, ω) ↾ ω)‘𝑤)))
2 alephfplem.1 . . 3 𝐻 = (rec(ℵ, ω) ↾ ω)
32fveq1i 6769 . 2 (𝐻‘suc 𝑤) = ((rec(ℵ, ω) ↾ ω)‘suc 𝑤)
42fveq1i 6769 . . 3 (𝐻𝑤) = ((rec(ℵ, ω) ↾ ω)‘𝑤)
54fveq2i 6771 . 2 (ℵ‘(𝐻𝑤)) = (ℵ‘((rec(ℵ, ω) ↾ ω)‘𝑤))
61, 3, 53eqtr4g 2804 1 (𝑤 ∈ ω → (𝐻‘suc 𝑤) = (ℵ‘(𝐻𝑤)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  cres 5590  suc csuc 6265  cfv 6430  ωcom 7700  reccrdg 8224  cale 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225
This theorem is referenced by:  alephfplem3  9846  alephfp  9848
  Copyright terms: Public domain W3C validator