Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alephfplem1 | Structured version Visualization version GIF version |
Description: Lemma for alephfp 9944. (Contributed by NM, 6-Nov-2004.) |
Ref | Expression |
---|---|
alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
Ref | Expression |
---|---|
alephfplem1 | ⊢ (𝐻‘∅) ∈ ran ℵ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9479 | . . . 4 ⊢ ω ∈ V | |
2 | fr0g 8316 | . . . 4 ⊢ (ω ∈ V → ((rec(ℵ, ω) ↾ ω)‘∅) = ω) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((rec(ℵ, ω) ↾ ω)‘∅) = ω |
4 | alephfplem.1 | . . . 4 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
5 | 4 | fveq1i 6813 | . . 3 ⊢ (𝐻‘∅) = ((rec(ℵ, ω) ↾ ω)‘∅) |
6 | aleph0 9902 | . . 3 ⊢ (ℵ‘∅) = ω | |
7 | 3, 5, 6 | 3eqtr4i 2775 | . 2 ⊢ (𝐻‘∅) = (ℵ‘∅) |
8 | alephfnon 9901 | . . 3 ⊢ ℵ Fn On | |
9 | 0elon 6342 | . . 3 ⊢ ∅ ∈ On | |
10 | fnfvelrn 6998 | . . 3 ⊢ ((ℵ Fn On ∧ ∅ ∈ On) → (ℵ‘∅) ∈ ran ℵ) | |
11 | 8, 9, 10 | mp2an 689 | . 2 ⊢ (ℵ‘∅) ∈ ran ℵ |
12 | 7, 11 | eqeltri 2834 | 1 ⊢ (𝐻‘∅) ∈ ran ℵ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3441 ∅c0 4267 ran crn 5609 ↾ cres 5610 Oncon0 6289 Fn wfn 6461 ‘cfv 6466 ωcom 7759 reccrdg 8289 ℵcale 9772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7630 ax-inf2 9477 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-ov 7320 df-om 7760 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-aleph 9776 |
This theorem is referenced by: alephfplem3 9942 alephfplem4 9943 |
Copyright terms: Public domain | W3C validator |