MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alephfplem1 Structured version   Visualization version   GIF version

Theorem alephfplem1 9940
Description: Lemma for alephfp 9944. (Contributed by NM, 6-Nov-2004.)
Hypothesis
Ref Expression
alephfplem.1 𝐻 = (rec(ℵ, ω) ↾ ω)
Assertion
Ref Expression
alephfplem1 (𝐻‘∅) ∈ ran ℵ

Proof of Theorem alephfplem1
StepHypRef Expression
1 omex 9479 . . . 4 ω ∈ V
2 fr0g 8316 . . . 4 (ω ∈ V → ((rec(ℵ, ω) ↾ ω)‘∅) = ω)
31, 2ax-mp 5 . . 3 ((rec(ℵ, ω) ↾ ω)‘∅) = ω
4 alephfplem.1 . . . 4 𝐻 = (rec(ℵ, ω) ↾ ω)
54fveq1i 6813 . . 3 (𝐻‘∅) = ((rec(ℵ, ω) ↾ ω)‘∅)
6 aleph0 9902 . . 3 (ℵ‘∅) = ω
73, 5, 63eqtr4i 2775 . 2 (𝐻‘∅) = (ℵ‘∅)
8 alephfnon 9901 . . 3 ℵ Fn On
9 0elon 6342 . . 3 ∅ ∈ On
10 fnfvelrn 6998 . . 3 ((ℵ Fn On ∧ ∅ ∈ On) → (ℵ‘∅) ∈ ran ℵ)
118, 9, 10mp2an 689 . 2 (ℵ‘∅) ∈ ran ℵ
127, 11eqeltri 2834 1 (𝐻‘∅) ∈ ran ℵ
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  c0 4267  ran crn 5609  cres 5610  Oncon0 6289   Fn wfn 6461  cfv 6466  ωcom 7759  reccrdg 8289  cale 9772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367  ax-un 7630  ax-inf2 9477
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5563  df-we 5565  df-xp 5614  df-rel 5615  df-cnv 5616  df-co 5617  df-dm 5618  df-rn 5619  df-res 5620  df-ima 5621  df-pred 6225  df-ord 6292  df-on 6293  df-lim 6294  df-suc 6295  df-iota 6418  df-fun 6468  df-fn 6469  df-f 6470  df-f1 6471  df-fo 6472  df-f1o 6473  df-fv 6474  df-ov 7320  df-om 7760  df-2nd 7879  df-frecs 8146  df-wrecs 8177  df-recs 8251  df-rdg 8290  df-aleph 9776
This theorem is referenced by:  alephfplem3  9942  alephfplem4  9943
  Copyright terms: Public domain W3C validator