| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alephfplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for alephfp 10005. (Contributed by NM, 6-Nov-2004.) |
| Ref | Expression |
|---|---|
| alephfplem.1 | ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) |
| Ref | Expression |
|---|---|
| alephfplem1 | ⊢ (𝐻‘∅) ∈ ran ℵ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9539 | . . . 4 ⊢ ω ∈ V | |
| 2 | fr0g 8361 | . . . 4 ⊢ (ω ∈ V → ((rec(ℵ, ω) ↾ ω)‘∅) = ω) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ((rec(ℵ, ω) ↾ ω)‘∅) = ω |
| 4 | alephfplem.1 | . . . 4 ⊢ 𝐻 = (rec(ℵ, ω) ↾ ω) | |
| 5 | 4 | fveq1i 6829 | . . 3 ⊢ (𝐻‘∅) = ((rec(ℵ, ω) ↾ ω)‘∅) |
| 6 | aleph0 9963 | . . 3 ⊢ (ℵ‘∅) = ω | |
| 7 | 3, 5, 6 | 3eqtr4i 2764 | . 2 ⊢ (𝐻‘∅) = (ℵ‘∅) |
| 8 | alephfnon 9962 | . . 3 ⊢ ℵ Fn On | |
| 9 | 0elon 6367 | . . 3 ⊢ ∅ ∈ On | |
| 10 | fnfvelrn 7019 | . . 3 ⊢ ((ℵ Fn On ∧ ∅ ∈ On) → (ℵ‘∅) ∈ ran ℵ) | |
| 11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ (ℵ‘∅) ∈ ran ℵ |
| 12 | 7, 11 | eqeltri 2827 | 1 ⊢ (𝐻‘∅) ∈ ran ℵ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4282 ran crn 5620 ↾ cres 5621 Oncon0 6312 Fn wfn 6482 ‘cfv 6487 ωcom 7802 reccrdg 8334 ℵcale 9835 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-inf2 9537 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-aleph 9839 |
| This theorem is referenced by: alephfplem3 10003 alephfplem4 10004 |
| Copyright terms: Public domain | W3C validator |