| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dih0cnv | Structured version Visualization version GIF version | ||
| Description: The isomorphism H converse value of the zero subspace is the lattice zero. (Contributed by NM, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| dih0cnv.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dih0cnv.o | ⊢ 0 = (0.‘𝐾) |
| dih0cnv.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dih0cnv.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dih0cnv.z | ⊢ 𝑍 = (0g‘𝑈) |
| Ref | Expression |
|---|---|
| dih0cnv | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{𝑍}) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dih0cnv.o | . . . 4 ⊢ 0 = (0.‘𝐾) | |
| 2 | dih0cnv.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | dih0cnv.i | . . . 4 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 4 | dih0cnv.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 5 | dih0cnv.z | . . . 4 ⊢ 𝑍 = (0g‘𝑈) | |
| 6 | 1, 2, 3, 4, 5 | dih0 41269 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼‘ 0 ) = {𝑍}) |
| 7 | 6 | fveq2d 6845 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘(𝐼‘ 0 )) = (◡𝐼‘{𝑍})) |
| 8 | hlatl 39348 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) | |
| 9 | 8 | adantr 480 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐾 ∈ AtLat) |
| 10 | eqid 2729 | . . . . 5 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 11 | 10, 1 | atl0cl 39291 | . . . 4 ⊢ (𝐾 ∈ AtLat → 0 ∈ (Base‘𝐾)) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 0 ∈ (Base‘𝐾)) |
| 13 | 10, 2, 3 | dihcnvid1 41261 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 0 ∈ (Base‘𝐾)) → (◡𝐼‘(𝐼‘ 0 )) = 0 ) |
| 14 | 12, 13 | mpdan 687 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘(𝐼‘ 0 )) = 0 ) |
| 15 | 7, 14 | eqtr3d 2766 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (◡𝐼‘{𝑍}) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4585 ◡ccnv 5630 ‘cfv 6500 Basecbs 17157 0gc0g 17380 0.cp0 18364 AtLatcal 39252 HLchlt 39338 LHypclh 39973 DVecHcdvh 41067 DIsoHcdih 41217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 ax-cnex 11103 ax-resscn 11104 ax-1cn 11105 ax-icn 11106 ax-addcl 11107 ax-addrcl 11108 ax-mulcl 11109 ax-mulrcl 11110 ax-mulcom 11111 ax-addass 11112 ax-mulass 11113 ax-distr 11114 ax-i2m1 11115 ax-1ne0 11116 ax-1rid 11117 ax-rnegex 11118 ax-rrecex 11119 ax-cnre 11120 ax-pre-lttri 11121 ax-pre-lttrn 11122 ax-pre-ltadd 11123 ax-pre-mulgt0 11124 ax-riotaBAD 38941 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6263 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-riota 7327 df-ov 7373 df-oprab 7374 df-mpo 7375 df-om 7824 df-1st 7948 df-2nd 7949 df-tpos 8183 df-undef 8230 df-frecs 8238 df-wrecs 8269 df-recs 8318 df-rdg 8356 df-1o 8412 df-er 8649 df-map 8779 df-en 8897 df-dom 8898 df-sdom 8899 df-fin 8900 df-pnf 11189 df-mnf 11190 df-xr 11191 df-ltxr 11192 df-le 11193 df-sub 11386 df-neg 11387 df-nn 12166 df-2 12228 df-3 12229 df-4 12230 df-5 12231 df-6 12232 df-n0 12422 df-z 12509 df-uz 12773 df-fz 13448 df-struct 17095 df-sets 17112 df-slot 17130 df-ndx 17142 df-base 17158 df-ress 17179 df-plusg 17211 df-mulr 17212 df-sca 17214 df-vsca 17215 df-0g 17382 df-proset 18237 df-poset 18256 df-plt 18271 df-lub 18287 df-glb 18288 df-join 18289 df-meet 18290 df-p0 18366 df-p1 18367 df-lat 18375 df-clat 18442 df-mgm 18551 df-sgrp 18630 df-mnd 18646 df-submnd 18695 df-grp 18852 df-minusg 18853 df-sbg 18854 df-subg 19039 df-cntz 19233 df-lsm 19552 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 df-dvr 20323 df-drng 20653 df-lmod 20802 df-lss 20872 df-lsp 20912 df-lvec 21044 df-oposet 39164 df-ol 39166 df-oml 39167 df-covers 39254 df-ats 39255 df-atl 39286 df-cvlat 39310 df-hlat 39339 df-llines 39487 df-lplanes 39488 df-lvols 39489 df-lines 39490 df-psubsp 39492 df-pmap 39493 df-padd 39785 df-lhyp 39977 df-laut 39978 df-ldil 40093 df-ltrn 40094 df-trl 40148 df-tendo 40744 df-edring 40746 df-disoa 41018 df-dvech 41068 df-dib 41128 df-dic 41162 df-dih 41218 |
| This theorem is referenced by: dih0sb 41274 doch0 41347 djh01 41401 |
| Copyright terms: Public domain | W3C validator |