Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnle Structured version   Visualization version   GIF version

Theorem trlnle 38652
Description: The atom not under the fiducial co-atom π‘Š is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
trlne.l ≀ = (leβ€˜πΎ)
trlne.a 𝐴 = (Atomsβ€˜πΎ)
trlne.h 𝐻 = (LHypβ€˜πΎ)
trlne.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlne.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlnle (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))

Proof of Theorem trlnle
StepHypRef Expression
1 simpl1l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ HL)
2 hlatl 37825 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ AtLat)
4 simpl3l 1229 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝑃 ∈ 𝐴)
5 trlne.l . . . . 5 ≀ = (leβ€˜πΎ)
6 eqid 2737 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
7 trlne.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7atnle0 37774 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) β†’ Β¬ 𝑃 ≀ (0.β€˜πΎ))
93, 4, 8syl2anc 585 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ Β¬ 𝑃 ≀ (0.β€˜πΎ))
10 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
11 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
12 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐹 ∈ 𝑇)
13 simpr 486 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
14 trlne.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
15 trlne.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
16 trlne.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
175, 6, 7, 14, 15, 16trl0 38636 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) = 𝑃)) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
1810, 11, 12, 13, 17syl112anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
1918breq2d 5118 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 ≀ (0.β€˜πΎ)))
209, 19mtbird 325 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
215, 7, 14, 15, 16trlne 38651 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 β‰  (π‘…β€˜πΉ))
2221adantr 482 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑃 β‰  (π‘…β€˜πΉ))
23 simpl1l 1225 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ HL)
2423, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ AtLat)
25 simpl3l 1229 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑃 ∈ 𝐴)
26 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
27 simpl3 1194 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
28 simpl2 1193 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐹 ∈ 𝑇)
29 simpr 486 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
305, 7, 14, 15, 16trlat 38635 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) β‰  𝑃)) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
3126, 27, 28, 29, 30syl112anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
325, 7atncmp 37777 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΉ) ∈ 𝐴) β†’ (Β¬ 𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 β‰  (π‘…β€˜πΉ)))
3324, 25, 31, 32syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (Β¬ 𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 β‰  (π‘…β€˜πΉ)))
3422, 33mpbird 257 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
3520, 34pm2.61dane 3033 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5106  β€˜cfv 6497  lecple 17141  0.cp0 18313  Atomscatm 37728  AtLatcal 37729  HLchlt 37815  LHypclh 38450  LTrncltrn 38567  trLctrl 38624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-map 8768  df-proset 18185  df-poset 18203  df-plt 18220  df-lub 18236  df-glb 18237  df-join 18238  df-meet 18239  df-p0 18315  df-p1 18316  df-lat 18322  df-clat 18389  df-oposet 37641  df-ol 37643  df-oml 37644  df-covers 37731  df-ats 37732  df-atl 37763  df-cvlat 37787  df-hlat 37816  df-lhyp 38454  df-laut 38455  df-ldil 38570  df-ltrn 38571  df-trl 38625
This theorem is referenced by:  cdlemc3  38659
  Copyright terms: Public domain W3C validator