Proof of Theorem trlnle
Step | Hyp | Ref
| Expression |
1 | | simpl1l 1222 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ HL) |
2 | | hlatl 37301 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐾 ∈ AtLat) |
4 | | simpl3l 1226 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → 𝑃 ∈ 𝐴) |
5 | | trlne.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
6 | | eqid 2738 |
. . . . 5
⊢
(0.‘𝐾) =
(0.‘𝐾) |
7 | | trlne.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
8 | 5, 6, 7 | atnle0 37250 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) → ¬ 𝑃 ≤ (0.‘𝐾)) |
9 | 3, 4, 8 | syl2anc 583 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → ¬ 𝑃 ≤ (0.‘𝐾)) |
10 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
11 | | simpl3 1191 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
12 | | simpl2 1190 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → 𝐹 ∈ 𝑇) |
13 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝐹‘𝑃) = 𝑃) |
14 | | trlne.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
15 | | trlne.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
16 | | trlne.r |
. . . . . 6
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
17 | 5, 6, 7, 14, 15, 16 | trl0 38111 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) = 𝑃)) → (𝑅‘𝐹) = (0.‘𝐾)) |
18 | 10, 11, 12, 13, 17 | syl112anc 1372 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑅‘𝐹) = (0.‘𝐾)) |
19 | 18 | breq2d 5082 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → (𝑃 ≤ (𝑅‘𝐹) ↔ 𝑃 ≤ (0.‘𝐾))) |
20 | 9, 19 | mtbird 324 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) = 𝑃) → ¬ 𝑃 ≤ (𝑅‘𝐹)) |
21 | 5, 7, 14, 15, 16 | trlne 38126 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → 𝑃 ≠ (𝑅‘𝐹)) |
22 | 21 | adantr 480 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑃 ≠ (𝑅‘𝐹)) |
23 | | simpl1l 1222 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐾 ∈ HL) |
24 | 23, 2 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐾 ∈ AtLat) |
25 | | simpl3l 1226 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝑃 ∈ 𝐴) |
26 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | | simpl3 1191 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
28 | | simpl2 1190 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → 𝐹 ∈ 𝑇) |
29 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝐹‘𝑃) ≠ 𝑃) |
30 | 5, 7, 14, 15, 16 | trlat 38110 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝐹 ∈ 𝑇 ∧ (𝐹‘𝑃) ≠ 𝑃)) → (𝑅‘𝐹) ∈ 𝐴) |
31 | 26, 27, 28, 29, 30 | syl112anc 1372 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (𝑅‘𝐹) ∈ 𝐴) |
32 | 5, 7 | atncmp 37253 |
. . . 4
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ (𝑅‘𝐹) ∈ 𝐴) → (¬ 𝑃 ≤ (𝑅‘𝐹) ↔ 𝑃 ≠ (𝑅‘𝐹))) |
33 | 24, 25, 31, 32 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → (¬ 𝑃 ≤ (𝑅‘𝐹) ↔ 𝑃 ≠ (𝑅‘𝐹))) |
34 | 22, 33 | mpbird 256 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) ∧ (𝐹‘𝑃) ≠ 𝑃) → ¬ 𝑃 ≤ (𝑅‘𝐹)) |
35 | 20, 34 | pm2.61dane 3031 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) → ¬ 𝑃 ≤ (𝑅‘𝐹)) |