Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnle Structured version   Visualization version   GIF version

Theorem trlnle 39045
Description: The atom not under the fiducial co-atom π‘Š is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
trlne.l ≀ = (leβ€˜πΎ)
trlne.a 𝐴 = (Atomsβ€˜πΎ)
trlne.h 𝐻 = (LHypβ€˜πΎ)
trlne.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
trlne.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
trlnle (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))

Proof of Theorem trlnle
StepHypRef Expression
1 simpl1l 1224 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ HL)
2 hlatl 38218 . . . . 5 (𝐾 ∈ HL β†’ 𝐾 ∈ AtLat)
31, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐾 ∈ AtLat)
4 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝑃 ∈ 𝐴)
5 trlne.l . . . . 5 ≀ = (leβ€˜πΎ)
6 eqid 2732 . . . . 5 (0.β€˜πΎ) = (0.β€˜πΎ)
7 trlne.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
85, 6, 7atnle0 38167 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴) β†’ Β¬ 𝑃 ≀ (0.β€˜πΎ))
93, 4, 8syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ Β¬ 𝑃 ≀ (0.β€˜πΎ))
10 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
11 simpl3 1193 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
12 simpl2 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ 𝐹 ∈ 𝑇)
13 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (πΉβ€˜π‘ƒ) = 𝑃)
14 trlne.h . . . . . 6 𝐻 = (LHypβ€˜πΎ)
15 trlne.t . . . . . 6 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
16 trlne.r . . . . . 6 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
175, 6, 7, 14, 15, 16trl0 39029 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) = 𝑃)) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
1810, 11, 12, 13, 17syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (π‘…β€˜πΉ) = (0.β€˜πΎ))
1918breq2d 5159 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ (𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 ≀ (0.β€˜πΎ)))
209, 19mtbird 324 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) = 𝑃) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
215, 7, 14, 15, 16trlne 39044 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ 𝑃 β‰  (π‘…β€˜πΉ))
2221adantr 481 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑃 β‰  (π‘…β€˜πΉ))
23 simpl1l 1224 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ HL)
2423, 2syl 17 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐾 ∈ AtLat)
25 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝑃 ∈ 𝐴)
26 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
27 simpl3 1193 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
28 simpl2 1192 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ 𝐹 ∈ 𝑇)
29 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (πΉβ€˜π‘ƒ) β‰  𝑃)
305, 7, 14, 15, 16trlat 39028 . . . . 5 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝐹 ∈ 𝑇 ∧ (πΉβ€˜π‘ƒ) β‰  𝑃)) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
3126, 27, 28, 29, 30syl112anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (π‘…β€˜πΉ) ∈ 𝐴)
325, 7atncmp 38170 . . . 4 ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ (π‘…β€˜πΉ) ∈ 𝐴) β†’ (Β¬ 𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 β‰  (π‘…β€˜πΉ)))
3324, 25, 31, 32syl3anc 1371 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ (Β¬ 𝑃 ≀ (π‘…β€˜πΉ) ↔ 𝑃 β‰  (π‘…β€˜πΉ)))
3422, 33mpbird 256 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) ∧ (πΉβ€˜π‘ƒ) β‰  𝑃) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
3520, 34pm2.61dane 3029 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝐹 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š)) β†’ Β¬ 𝑃 ≀ (π‘…β€˜πΉ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  lecple 17200  0.cp0 18372  Atomscatm 38121  AtLatcal 38122  HLchlt 38208  LHypclh 38843  LTrncltrn 38960  trLctrl 39017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-p1 18375  df-lat 18381  df-clat 18448  df-oposet 38034  df-ol 38036  df-oml 38037  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180  df-hlat 38209  df-lhyp 38847  df-laut 38848  df-ldil 38963  df-ltrn 38964  df-trl 39018
This theorem is referenced by:  cdlemc3  39052
  Copyright terms: Public domain W3C validator