Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddasslem2 Structured version   Visualization version   GIF version

Theorem paddasslem2 39810
Description: Lemma for paddass 39827. (Contributed by NM, 8-Jan-2012.)
Hypotheses
Ref Expression
paddasslem.l = (le‘𝐾)
paddasslem.j = (join‘𝐾)
paddasslem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
paddasslem2 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑧 (𝑟 𝑦))

Proof of Theorem paddasslem2
StepHypRef Expression
1 simp1l 1198 . . . 4 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ HL)
2 simp1r 1199 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝐴)
3 simp23 1209 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑧𝐴)
4 simp22 1208 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑦𝐴)
52, 3, 43jca 1128 . . . 4 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → (𝑟𝐴𝑧𝐴𝑦𝐴))
6 simp21 1207 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑥𝐴)
7 simp3l 1202 . . . . 5 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → ¬ 𝑟 (𝑥 𝑦))
8 paddasslem.l . . . . . 6 = (le‘𝐾)
9 paddasslem.j . . . . . 6 = (join‘𝐾)
10 paddasslem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
118, 9, 10atnlej2 39369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑥𝐴𝑦𝐴) ∧ ¬ 𝑟 (𝑥 𝑦)) → 𝑟𝑦)
121, 2, 6, 4, 7, 11syl131anc 1385 . . . 4 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑟𝑦)
131, 5, 123jca 1128 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → (𝐾 ∈ HL ∧ (𝑟𝐴𝑧𝐴𝑦𝐴) ∧ 𝑟𝑦))
14 simp3r 1203 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 (𝑦 𝑧))
158, 9, 10hlatexch1 39384 . . 3 ((𝐾 ∈ HL ∧ (𝑟𝐴𝑧𝐴𝑦𝐴) ∧ 𝑟𝑦) → (𝑟 (𝑦 𝑧) → 𝑧 (𝑦 𝑟)))
1613, 14, 15sylc 65 . 2 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑧 (𝑦 𝑟))
171hllatd 39353 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝐾 ∈ Lat)
18 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
1918, 10atbase 39278 . . . 4 (𝑟𝐴𝑟 ∈ (Base‘𝐾))
202, 19syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑟 ∈ (Base‘𝐾))
2118, 10atbase 39278 . . . 4 (𝑦𝐴𝑦 ∈ (Base‘𝐾))
224, 21syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑦 ∈ (Base‘𝐾))
2318, 9latjcom 18353 . . 3 ((𝐾 ∈ Lat ∧ 𝑟 ∈ (Base‘𝐾) ∧ 𝑦 ∈ (Base‘𝐾)) → (𝑟 𝑦) = (𝑦 𝑟))
2417, 20, 22, 23syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → (𝑟 𝑦) = (𝑦 𝑟))
2516, 24breqtrrd 5120 1 (((𝐾 ∈ HL ∧ 𝑟𝐴) ∧ (𝑥𝐴𝑦𝐴𝑧𝐴) ∧ (¬ 𝑟 (𝑥 𝑦) ∧ 𝑟 (𝑦 𝑧))) → 𝑧 (𝑟 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39252  HLchlt 39339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340
This theorem is referenced by:  paddasslem4  39812
  Copyright terms: Public domain W3C validator