Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Visualization version   GIF version

Theorem atltcvr 37376
Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s < = (lt‘𝐾)
atltcvr.j = (join‘𝐾)
atltcvr.a 𝐴 = (Atoms‘𝐾)
atltcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atltcvr ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 7262 . . . . . 6 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 simpr3 1194 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
3 atltcvr.j . . . . . . . 8 = (join‘𝐾)
4 atltcvr.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4hlatjidm 37310 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
62, 5syldan 590 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑅) = 𝑅)
71, 6sylan9eqr 2801 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
87breq2d 5082 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) ↔ 𝑃 < 𝑅))
9 hlatl 37301 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
109adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ AtLat)
11 simpr1 1192 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
12 atltcvr.s . . . . . . . 8 < = (lt‘𝐾)
1312, 4atnlt 37254 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → ¬ 𝑃 < 𝑅)
1410, 11, 2, 13syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑃 < 𝑅)
1514pm2.21d 121 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
1615adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
178, 16sylbid 239 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
18 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
19 hllat 37304 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2019adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
21 simpr2 1193 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
22 eqid 2738 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4atbase 37230 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2421, 23syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
2522, 4atbase 37230 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
262, 25syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2722, 3latjcl 18072 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2820, 24, 26, 27syl3anc 1369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
29 eqid 2738 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
3029, 12pltle 17966 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3118, 11, 28, 30syl3anc 1369 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3231adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
33 simpll 763 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝐾 ∈ HL)
34 simplr 765 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
35 simpr 484 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅)))
3633, 34, 353jca 1126 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
3736anassrs 467 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
38 atltcvr.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
3929, 3, 38, 4atcvrj2 37374 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
4037, 39syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
4140ex 412 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4232, 41syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4317, 42pm2.61dane 3031 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4422, 4atbase 37230 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4511, 44syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
4622, 12, 38cvrlt 37211 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 < (𝑄 𝑅))
4746ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4818, 45, 28, 47syl3anc 1369 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4943, 48impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  ltcplt 17941  joincjn 17944  Latclat 18064  ccvr 37203  Atomscatm 37204  AtLatcal 37205  HLchlt 37291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292
This theorem is referenced by:  atlt  37378  2atlt  37380  atexchltN  37382
  Copyright terms: Public domain W3C validator