Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Visualization version   GIF version

Theorem atltcvr 38111
Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s < = (lt‘𝐾)
atltcvr.j = (join‘𝐾)
atltcvr.a 𝐴 = (Atoms‘𝐾)
atltcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atltcvr ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 7400 . . . . . 6 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 simpr3 1196 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
3 atltcvr.j . . . . . . . 8 = (join‘𝐾)
4 atltcvr.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4hlatjidm 38044 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
62, 5syldan 591 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑅) = 𝑅)
71, 6sylan9eqr 2793 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
87breq2d 5153 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) ↔ 𝑃 < 𝑅))
9 hlatl 38035 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
109adantr 481 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ AtLat)
11 simpr1 1194 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
12 atltcvr.s . . . . . . . 8 < = (lt‘𝐾)
1312, 4atnlt 37988 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → ¬ 𝑃 < 𝑅)
1410, 11, 2, 13syl3anc 1371 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑃 < 𝑅)
1514pm2.21d 121 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
1615adantr 481 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
178, 16sylbid 239 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
18 simpl 483 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
19 hllat 38038 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2019adantr 481 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
21 simpr2 1195 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
22 eqid 2731 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4atbase 37964 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2421, 23syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
2522, 4atbase 37964 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
262, 25syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2722, 3latjcl 18374 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2820, 24, 26, 27syl3anc 1371 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
29 eqid 2731 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
3029, 12pltle 18268 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3118, 11, 28, 30syl3anc 1371 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3231adantr 481 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
33 simpll 765 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝐾 ∈ HL)
34 simplr 767 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
35 simpr 485 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅)))
3633, 34, 353jca 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
3736anassrs 468 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
38 atltcvr.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
3929, 3, 38, 4atcvrj2 38109 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
4037, 39syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
4140ex 413 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4232, 41syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4317, 42pm2.61dane 3028 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4422, 4atbase 37964 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4511, 44syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
4622, 12, 38cvrlt 37945 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 < (𝑄 𝑅))
4746ex 413 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4818, 45, 28, 47syl3anc 1371 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4943, 48impbid 211 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5141  cfv 6532  (class class class)co 7393  Basecbs 17126  lecple 17186  ltcplt 18243  joincjn 18246  Latclat 18366  ccvr 37937  Atomscatm 37938  AtLatcal 37939  HLchlt 38025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-proset 18230  df-poset 18248  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-lat 18367  df-clat 18434  df-oposet 37851  df-ol 37853  df-oml 37854  df-covers 37941  df-ats 37942  df-atl 37973  df-cvlat 37997  df-hlat 38026
This theorem is referenced by:  atlt  38113  2atlt  38115  atexchltN  38117
  Copyright terms: Public domain W3C validator