Proof of Theorem atltcvr
| Step | Hyp | Ref
| Expression |
| 1 | | oveq1 7438 |
. . . . . 6
⊢ (𝑄 = 𝑅 → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑅)) |
| 2 | | simpr3 1197 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ 𝐴) |
| 3 | | atltcvr.j |
. . . . . . . 8
⊢ ∨ =
(join‘𝐾) |
| 4 | | atltcvr.a |
. . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) |
| 5 | 3, 4 | hlatjidm 39370 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) |
| 6 | 2, 5 | syldan 591 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑅 ∨ 𝑅) = 𝑅) |
| 7 | 1, 6 | sylan9eqr 2799 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 ∨ 𝑅) = 𝑅) |
| 8 | 7 | breq2d 5155 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃 < 𝑅)) |
| 9 | | hlatl 39361 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ AtLat) |
| 10 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ AtLat) |
| 11 | | simpr1 1195 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ 𝐴) |
| 12 | | atltcvr.s |
. . . . . . . 8
⊢ < =
(lt‘𝐾) |
| 13 | 12, 4 | atnlt 39314 |
. . . . . . 7
⊢ ((𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) → ¬ 𝑃 < 𝑅) |
| 14 | 10, 11, 2, 13 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → ¬ 𝑃 < 𝑅) |
| 15 | 14 | pm2.21d 121 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < 𝑅 → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 16 | 15 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < 𝑅 → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 17 | 8, 16 | sylbid 240 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 18 | | simpl 482 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ HL) |
| 19 | | hllat 39364 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 20 | 19 | adantr 480 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝐾 ∈ Lat) |
| 21 | | simpr2 1196 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ 𝐴) |
| 22 | | eqid 2737 |
. . . . . . . . 9
⊢
(Base‘𝐾) =
(Base‘𝐾) |
| 23 | 22, 4 | atbase 39290 |
. . . . . . . 8
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
| 24 | 21, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑄 ∈ (Base‘𝐾)) |
| 25 | 22, 4 | atbase 39290 |
. . . . . . . 8
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
| 26 | 2, 25 | syl 17 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑅 ∈ (Base‘𝐾)) |
| 27 | 22, 3 | latjcl 18484 |
. . . . . . 7
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 28 | 20, 24, 26, 27 | syl3anc 1373 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) |
| 29 | | eqid 2737 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
| 30 | 29, 12 | pltle 18378 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) |
| 31 | 18, 11, 28, 30 | syl3anc 1373 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) |
| 32 | 31 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) |
| 33 | | simpll 767 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) → 𝐾 ∈ HL) |
| 34 | | simplr 769 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) → (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) |
| 35 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) → (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) |
| 36 | 33, 34, 35 | 3jca 1129 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) → (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅)))) |
| 37 | 36 | anassrs 467 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 ≠ 𝑅) ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅)) → (𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅)))) |
| 38 | | atltcvr.c |
. . . . . . 7
⊢ 𝐶 = ( ⋖ ‘𝐾) |
| 39 | 29, 3, 38, 4 | atcvrj2 39435 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑄 ≠ 𝑅 ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅))) → 𝑃𝐶(𝑄 ∨ 𝑅)) |
| 40 | 37, 39 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 ≠ 𝑅) ∧ 𝑃(le‘𝐾)(𝑄 ∨ 𝑅)) → 𝑃𝐶(𝑄 ∨ 𝑅)) |
| 41 | 40 | ex 412 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 ≠ 𝑅) → (𝑃(le‘𝐾)(𝑄 ∨ 𝑅) → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 42 | 32, 41 | syld 47 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) ∧ 𝑄 ≠ 𝑅) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 43 | 17, 42 | pm2.61dane 3029 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) → 𝑃𝐶(𝑄 ∨ 𝑅))) |
| 44 | 22, 4 | atbase 39290 |
. . . 4
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
| 45 | 11, 44 | syl 17 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → 𝑃 ∈ (Base‘𝐾)) |
| 46 | 22, 12, 38 | cvrlt 39271 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 ∨ 𝑅)) → 𝑃 < (𝑄 ∨ 𝑅)) |
| 47 | 46 | ex 412 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 ∨ 𝑅) ∈ (Base‘𝐾)) → (𝑃𝐶(𝑄 ∨ 𝑅) → 𝑃 < (𝑄 ∨ 𝑅))) |
| 48 | 18, 45, 28, 47 | syl3anc 1373 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃𝐶(𝑄 ∨ 𝑅) → 𝑃 < (𝑄 ∨ 𝑅))) |
| 49 | 43, 48 | impbid 212 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴)) → (𝑃 < (𝑄 ∨ 𝑅) ↔ 𝑃𝐶(𝑄 ∨ 𝑅))) |