Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atltcvr Structured version   Visualization version   GIF version

Theorem atltcvr 39429
Description: An equivalence of less-than ordering and covers relation. (Contributed by NM, 7-Feb-2012.)
Hypotheses
Ref Expression
atltcvr.s < = (lt‘𝐾)
atltcvr.j = (join‘𝐾)
atltcvr.a 𝐴 = (Atoms‘𝐾)
atltcvr.c 𝐶 = ( ⋖ ‘𝐾)
Assertion
Ref Expression
atltcvr ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))

Proof of Theorem atltcvr
StepHypRef Expression
1 oveq1 7394 . . . . . 6 (𝑄 = 𝑅 → (𝑄 𝑅) = (𝑅 𝑅))
2 simpr3 1197 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅𝐴)
3 atltcvr.j . . . . . . . 8 = (join‘𝐾)
4 atltcvr.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
53, 4hlatjidm 39362 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
62, 5syldan 591 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑅 𝑅) = 𝑅)
71, 6sylan9eqr 2786 . . . . 5 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑄 𝑅) = 𝑅)
87breq2d 5119 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) ↔ 𝑃 < 𝑅))
9 hlatl 39353 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ AtLat)
109adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ AtLat)
11 simpr1 1195 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃𝐴)
12 atltcvr.s . . . . . . . 8 < = (lt‘𝐾)
1312, 4atnlt 39306 . . . . . . 7 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑅𝐴) → ¬ 𝑃 < 𝑅)
1410, 11, 2, 13syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → ¬ 𝑃 < 𝑅)
1514pm2.21d 121 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
1615adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < 𝑅𝑃𝐶(𝑄 𝑅)))
178, 16sylbid 240 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄 = 𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
18 simpl 482 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ HL)
19 hllat 39356 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2019adantr 480 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝐾 ∈ Lat)
21 simpr2 1196 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄𝐴)
22 eqid 2729 . . . . . . . . 9 (Base‘𝐾) = (Base‘𝐾)
2322, 4atbase 39282 . . . . . . . 8 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
2421, 23syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑄 ∈ (Base‘𝐾))
2522, 4atbase 39282 . . . . . . . 8 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
262, 25syl 17 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑅 ∈ (Base‘𝐾))
2722, 3latjcl 18398 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) ∈ (Base‘𝐾))
2820, 24, 26, 27syl3anc 1373 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
29 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
3029, 12pltle 18292 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3118, 11, 28, 30syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
3231adantr 480 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃(le‘𝐾)(𝑄 𝑅)))
33 simpll 766 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝐾 ∈ HL)
34 simplr 768 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑃𝐴𝑄𝐴𝑅𝐴))
35 simpr 484 . . . . . . . 8 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅)))
3633, 34, 353jca 1128 . . . . . . 7 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
3736anassrs 467 . . . . . 6 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → (𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))))
38 atltcvr.c . . . . . . 7 𝐶 = ( ⋖ ‘𝐾)
3929, 3, 38, 4atcvrj2 39427 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑄𝑅𝑃(le‘𝐾)(𝑄 𝑅))) → 𝑃𝐶(𝑄 𝑅))
4037, 39syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) ∧ 𝑃(le‘𝐾)(𝑄 𝑅)) → 𝑃𝐶(𝑄 𝑅))
4140ex 412 . . . 4 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃(le‘𝐾)(𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4232, 41syld 47 . . 3 (((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) ∧ 𝑄𝑅) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4317, 42pm2.61dane 3012 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) → 𝑃𝐶(𝑄 𝑅)))
4422, 4atbase 39282 . . . 4 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
4511, 44syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → 𝑃 ∈ (Base‘𝐾))
4622, 12, 38cvrlt 39263 . . . 4 (((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ 𝑃𝐶(𝑄 𝑅)) → 𝑃 < (𝑄 𝑅))
4746ex 412 . . 3 ((𝐾 ∈ HL ∧ 𝑃 ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4818, 45, 28, 47syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃𝐶(𝑄 𝑅) → 𝑃 < (𝑄 𝑅)))
4943, 48impbid 212 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑄𝐴𝑅𝐴)) → (𝑃 < (𝑄 𝑅) ↔ 𝑃𝐶(𝑄 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  lecple 17227  ltcplt 18269  joincjn 18272  Latclat 18390  ccvr 39255  Atomscatm 39256  AtLatcal 39257  HLchlt 39343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344
This theorem is referenced by:  atlt  39431  2atlt  39433  atexchltN  39435
  Copyright terms: Public domain W3C validator