Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atncmp Structured version   Visualization version   GIF version

Theorem atncmp 36315
Description: Frequently-used variation of atcmp 36314. (Contributed by NM, 29-Jun-2012.)
Hypotheses
Ref Expression
atcmp.l = (le‘𝐾)
atcmp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atncmp ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃 𝑄𝑃𝑄))

Proof of Theorem atncmp
StepHypRef Expression
1 atcmp.l . . 3 = (le‘𝐾)
2 atcmp.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atcmp 36314 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
43necon3bbid 3058 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃 𝑄𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  w3a 1081   = wceq 1530  wcel 2107  wne 3021   class class class wbr 5063  cfv 6352  lecple 16562  Atomscatm 36266  AtLatcal 36267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-proset 17528  df-poset 17546  df-plt 17558  df-glb 17575  df-p0 17639  df-lat 17646  df-covers 36269  df-ats 36270  df-atl 36301
This theorem is referenced by:  atnem0  36321  cvlatexchb1  36337  3dim2  36471  2dim  36473  ps-2  36481  islln3  36513  llnexatN  36524  isline4N  36780  trlnle  37189  cdleme7ga  37251
  Copyright terms: Public domain W3C validator