Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atncmp Structured version   Visualization version   GIF version

Theorem atncmp 39276
Description: Frequently-used variation of atcmp 39275. (Contributed by NM, 29-Jun-2012.)
Hypotheses
Ref Expression
atcmp.l = (le‘𝐾)
atcmp.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atncmp ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃 𝑄𝑃𝑄))

Proof of Theorem atncmp
StepHypRef Expression
1 atcmp.l . . 3 = (le‘𝐾)
2 atcmp.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atcmp 39275 . 2 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄𝑃 = 𝑄))
43necon3bbid 2969 1 ((𝐾 ∈ AtLat ∧ 𝑃𝐴𝑄𝐴) → (¬ 𝑃 𝑄𝑃𝑄))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108  wne 2932   class class class wbr 5119  cfv 6530  lecple 17276  Atomscatm 39227  AtLatcal 39228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-riota 7360  df-proset 18304  df-poset 18323  df-plt 18338  df-glb 18355  df-p0 18433  df-lat 18440  df-covers 39230  df-ats 39231  df-atl 39262
This theorem is referenced by:  atnem0  39282  cvlatexchb1  39298  3dim2  39433  2dim  39435  ps-2  39443  islln3  39475  llnexatN  39486  isline4N  39742  trlnle  40151  cdleme7ga  40213
  Copyright terms: Public domain W3C validator