![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > logdivlt | Structured version Visualization version GIF version |
Description: The log𝑥 / 𝑥 function is strictly decreasing on the reals greater than e. (Contributed by Mario Carneiro, 14-Mar-2014.) |
Ref | Expression |
---|---|
logdivlt | ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | logdivlti 26509 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐴 < 𝐵) → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴)) | |
2 | 1 | ex 412 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ e ≤ 𝐴) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
3 | 2 | 3expa 1115 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ e ≤ 𝐴) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
4 | 3 | an32s 649 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
5 | 4 | adantrr 714 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 → ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
6 | fveq2 6885 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (log‘𝐴) = (log‘𝐵)) | |
7 | id 22 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
8 | 6, 7 | oveq12d 7423 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → ((log‘𝐴) / 𝐴) = ((log‘𝐵) / 𝐵)) |
9 | 8 | eqcomd 2732 | . . . . . 6 ⊢ (𝐴 = 𝐵 → ((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴)) |
10 | 9 | a1i 11 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 = 𝐵 → ((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴))) |
11 | logdivlti 26509 | . . . . . . . . . 10 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵) ∧ 𝐵 < 𝐴) → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)) | |
12 | 11 | ex 412 | . . . . . . . . 9 ⊢ ((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ e ≤ 𝐵) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
13 | 12 | 3expa 1115 | . . . . . . . 8 ⊢ (((𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ) ∧ e ≤ 𝐵) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
14 | 13 | an32s 649 | . . . . . . 7 ⊢ (((𝐵 ∈ ℝ ∧ e ≤ 𝐵) ∧ 𝐴 ∈ ℝ) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
15 | 14 | adantrr 714 | . . . . . 6 ⊢ (((𝐵 ∈ ℝ ∧ e ≤ 𝐵) ∧ (𝐴 ∈ ℝ ∧ e ≤ 𝐴)) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
16 | 15 | ancoms 458 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐵 < 𝐴 → ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵))) |
17 | 10, 16 | orim12d 961 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → ((𝐴 = 𝐵 ∨ 𝐵 < 𝐴) → (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) |
18 | 17 | con3d 152 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)) → ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
19 | simpl 482 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 𝐵 ∈ ℝ) | |
20 | epos 16157 | . . . . . . . 8 ⊢ 0 < e | |
21 | 0re 11220 | . . . . . . . . 9 ⊢ 0 ∈ ℝ | |
22 | ere 16039 | . . . . . . . . 9 ⊢ e ∈ ℝ | |
23 | ltletr 11310 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐵) → 0 < 𝐵)) | |
24 | 21, 22, 23 | mp3an12 1447 | . . . . . . . 8 ⊢ (𝐵 ∈ ℝ → ((0 < e ∧ e ≤ 𝐵) → 0 < 𝐵)) |
25 | 20, 24 | mpani 693 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (e ≤ 𝐵 → 0 < 𝐵)) |
26 | 25 | imp 406 | . . . . . 6 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 0 < 𝐵) |
27 | 19, 26 | elrpd 13019 | . . . . 5 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → 𝐵 ∈ ℝ+) |
28 | relogcl 26464 | . . . . . 6 ⊢ (𝐵 ∈ ℝ+ → (log‘𝐵) ∈ ℝ) | |
29 | rerpdivcl 13010 | . . . . . 6 ⊢ (((log‘𝐵) ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((log‘𝐵) / 𝐵) ∈ ℝ) | |
30 | 28, 29 | mpancom 685 | . . . . 5 ⊢ (𝐵 ∈ ℝ+ → ((log‘𝐵) / 𝐵) ∈ ℝ) |
31 | 27, 30 | syl 17 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ e ≤ 𝐵) → ((log‘𝐵) / 𝐵) ∈ ℝ) |
32 | simpl 482 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 𝐴 ∈ ℝ) | |
33 | ltletr 11310 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ e ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴)) | |
34 | 21, 22, 33 | mp3an12 1447 | . . . . . . . 8 ⊢ (𝐴 ∈ ℝ → ((0 < e ∧ e ≤ 𝐴) → 0 < 𝐴)) |
35 | 20, 34 | mpani 693 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → (e ≤ 𝐴 → 0 < 𝐴)) |
36 | 35 | imp 406 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 0 < 𝐴) |
37 | 32, 36 | elrpd 13019 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → 𝐴 ∈ ℝ+) |
38 | relogcl 26464 | . . . . . 6 ⊢ (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ) | |
39 | rerpdivcl 13010 | . . . . . 6 ⊢ (((log‘𝐴) ∈ ℝ ∧ 𝐴 ∈ ℝ+) → ((log‘𝐴) / 𝐴) ∈ ℝ) | |
40 | 38, 39 | mpancom 685 | . . . . 5 ⊢ (𝐴 ∈ ℝ+ → ((log‘𝐴) / 𝐴) ∈ ℝ) |
41 | 37, 40 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ e ≤ 𝐴) → ((log‘𝐴) / 𝐴) ∈ ℝ) |
42 | axlttri 11289 | . . . 4 ⊢ ((((log‘𝐵) / 𝐵) ∈ ℝ ∧ ((log‘𝐴) / 𝐴) ∈ ℝ) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ ¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) | |
43 | 31, 41, 42 | syl2anr 596 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) ↔ ¬ (((log‘𝐵) / 𝐵) = ((log‘𝐴) / 𝐴) ∨ ((log‘𝐴) / 𝐴) < ((log‘𝐵) / 𝐵)))) |
44 | axlttri 11289 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) | |
45 | 44 | ad2ant2r 744 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵 ∨ 𝐵 < 𝐴))) |
46 | 18, 43, 45 | 3imtr4d 294 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴) → 𝐴 < 𝐵)) |
47 | 5, 46 | impbid 211 | 1 ⊢ (((𝐴 ∈ ℝ ∧ e ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ e ≤ 𝐵)) → (𝐴 < 𝐵 ↔ ((log‘𝐵) / 𝐵) < ((log‘𝐴) / 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 844 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 ℝcr 11111 0cc0 11112 < clt 11252 ≤ cle 11253 / cdiv 11875 ℝ+crp 12980 eceu 16012 logclog 26443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ioc 13335 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-mod 13841 df-seq 13973 df-exp 14033 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15020 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-limsup 15421 df-clim 15438 df-rlim 15439 df-sum 15639 df-ef 16017 df-e 16018 df-sin 16019 df-cos 16020 df-pi 16022 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-lp 22995 df-perf 22996 df-cn 23086 df-cnp 23087 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-xms 24181 df-ms 24182 df-tms 24183 df-cncf 24753 df-limc 25750 df-dv 25751 df-log 26445 |
This theorem is referenced by: logdivle 26511 bposlem7 27178 chebbnd1lem2 27358 chebbnd1lem3 27359 pntpbnd1a 27473 |
Copyright terms: Public domain | W3C validator |