MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cosord Structured version   Visualization version   GIF version

Theorem cosord 25903
Description: Cosine is decreasing over the closed interval from 0 to π. (Contributed by Paul Chapman, 16-Mar-2008.) (Proof shortened by Mario Carneiro, 10-May-2014.)
Assertion
Ref Expression
cosord ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴)))

Proof of Theorem cosord
StepHypRef Expression
1 simpll 766 . . . 4 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 ∈ (0[,]π))
2 simplr 768 . . . 4 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐵 ∈ (0[,]π))
3 simpr 486 . . . 4 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
41, 2, 3cosordlem 25902 . . 3 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐴 < 𝐵) → (cos‘𝐵) < (cos‘𝐴))
54ex 414 . 2 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 → (cos‘𝐵) < (cos‘𝐴)))
6 fveq2 6843 . . . . . . 7 (𝐴 = 𝐵 → (cos‘𝐴) = (cos‘𝐵))
76eqcomd 2739 . . . . . 6 (𝐴 = 𝐵 → (cos‘𝐵) = (cos‘𝐴))
87a1i 11 . . . . 5 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 = 𝐵 → (cos‘𝐵) = (cos‘𝐴)))
9 simplr 768 . . . . . . 7 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 ∈ (0[,]π))
10 simpll 766 . . . . . . 7 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐴 ∈ (0[,]π))
11 simpr 486 . . . . . . 7 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴)
129, 10, 11cosordlem 25902 . . . . . 6 (((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) ∧ 𝐵 < 𝐴) → (cos‘𝐴) < (cos‘𝐵))
1312ex 414 . . . . 5 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐵 < 𝐴 → (cos‘𝐴) < (cos‘𝐵)))
148, 13orim12d 964 . . . 4 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((𝐴 = 𝐵𝐵 < 𝐴) → ((cos‘𝐵) = (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))))
1514con3d 152 . . 3 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (¬ ((cos‘𝐵) = (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵)) → ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
16 0re 11162 . . . . . 6 0 ∈ ℝ
17 pire 25831 . . . . . 6 π ∈ ℝ
1816, 17elicc2i 13336 . . . . 5 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
1918simp1bi 1146 . . . 4 (𝐴 ∈ (0[,]π) → 𝐴 ∈ ℝ)
2016, 17elicc2i 13336 . . . . 5 (𝐵 ∈ (0[,]π) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵𝐵 ≤ π))
2120simp1bi 1146 . . . 4 (𝐵 ∈ (0[,]π) → 𝐵 ∈ ℝ)
22 recoscl 16028 . . . . 5 (𝐵 ∈ ℝ → (cos‘𝐵) ∈ ℝ)
23 recoscl 16028 . . . . 5 (𝐴 ∈ ℝ → (cos‘𝐴) ∈ ℝ)
24 axlttri 11231 . . . . 5 (((cos‘𝐵) ∈ ℝ ∧ (cos‘𝐴) ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ¬ ((cos‘𝐵) = (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))))
2522, 23, 24syl2anr 598 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((cos‘𝐵) < (cos‘𝐴) ↔ ¬ ((cos‘𝐵) = (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))))
2619, 21, 25syl2an 597 . . 3 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐵) < (cos‘𝐴) ↔ ¬ ((cos‘𝐵) = (cos‘𝐴) ∨ (cos‘𝐴) < (cos‘𝐵))))
27 axlttri 11231 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
2819, 21, 27syl2an 597 . . 3 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ ¬ (𝐴 = 𝐵𝐵 < 𝐴)))
2915, 26, 283imtr4d 294 . 2 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → ((cos‘𝐵) < (cos‘𝐴) → 𝐴 < 𝐵))
305, 29impbid 211 1 ((𝐴 ∈ (0[,]π) ∧ 𝐵 ∈ (0[,]π)) → (𝐴 < 𝐵 ↔ (cos‘𝐵) < (cos‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107   class class class wbr 5106  cfv 6497  (class class class)co 7358  cr 11055  0cc0 11056   < clt 11194  cle 11195  [,]cicc 13273  cosccos 15952  πcpi 15954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-inf2 9582  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133  ax-pre-sup 11134  ax-addf 11135  ax-mulf 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-tp 4592  df-op 4594  df-uni 4867  df-int 4909  df-iun 4957  df-iin 4958  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-se 5590  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-isom 6506  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-1st 7922  df-2nd 7923  df-supp 8094  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-1o 8413  df-2o 8414  df-er 8651  df-map 8770  df-pm 8771  df-ixp 8839  df-en 8887  df-dom 8888  df-sdom 8889  df-fin 8890  df-fsupp 9309  df-fi 9352  df-sup 9383  df-inf 9384  df-oi 9451  df-card 9880  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-div 11818  df-nn 12159  df-2 12221  df-3 12222  df-4 12223  df-5 12224  df-6 12225  df-7 12226  df-8 12227  df-9 12228  df-n0 12419  df-z 12505  df-dec 12624  df-uz 12769  df-q 12879  df-rp 12921  df-xneg 13038  df-xadd 13039  df-xmul 13040  df-ioo 13274  df-ioc 13275  df-ico 13276  df-icc 13277  df-fz 13431  df-fzo 13574  df-fl 13703  df-seq 13913  df-exp 13974  df-fac 14180  df-bc 14209  df-hash 14237  df-shft 14958  df-cj 14990  df-re 14991  df-im 14992  df-sqrt 15126  df-abs 15127  df-limsup 15359  df-clim 15376  df-rlim 15377  df-sum 15577  df-ef 15955  df-sin 15957  df-cos 15958  df-pi 15960  df-struct 17024  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-ress 17118  df-plusg 17151  df-mulr 17152  df-starv 17153  df-sca 17154  df-vsca 17155  df-ip 17156  df-tset 17157  df-ple 17158  df-ds 17160  df-unif 17161  df-hom 17162  df-cco 17163  df-rest 17309  df-topn 17310  df-0g 17328  df-gsum 17329  df-topgen 17330  df-pt 17331  df-prds 17334  df-xrs 17389  df-qtop 17394  df-imas 17395  df-xps 17397  df-mre 17471  df-mrc 17472  df-acs 17474  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-submnd 18607  df-mulg 18878  df-cntz 19102  df-cmn 19569  df-psmet 20804  df-xmet 20805  df-met 20806  df-bl 20807  df-mopn 20808  df-fbas 20809  df-fg 20810  df-cnfld 20813  df-top 22259  df-topon 22276  df-topsp 22298  df-bases 22312  df-cld 22386  df-ntr 22387  df-cls 22388  df-nei 22465  df-lp 22503  df-perf 22504  df-cn 22594  df-cnp 22595  df-haus 22682  df-tx 22929  df-hmeo 23122  df-fil 23213  df-fm 23305  df-flim 23306  df-flf 23307  df-xms 23689  df-ms 23690  df-tms 23691  df-cncf 24257  df-limc 25246  df-dv 25247
This theorem is referenced by:  cos11  25905  sinord  25906  tanord1  25909  argregt0  25981  argrege0  25982
  Copyright terms: Public domain W3C validator