Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlem5 Structured version   Visualization version   GIF version

Theorem ballotlem5 31662
 Description: If A is not ahead throughout, there is a 𝑘 where votes are tied. (Contributed by Thierry Arnoux, 1-Dec-2016.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
Assertion
Ref Expression
ballotlem5 (𝐶 ∈ (𝑂𝐸) → ∃𝑘 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑘) = 0)
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹   𝑘,𝐹   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥,𝑐)   𝐹(𝑥)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlem5
StepHypRef Expression
1 ballotth.m . 2 𝑀 ∈ ℕ
2 ballotth.n . 2 𝑁 ∈ ℕ
3 ballotth.o . 2 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . 2 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . 2 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 eldifi 4107 . 2 (𝐶 ∈ (𝑂𝐸) → 𝐶𝑂)
71a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → 𝑀 ∈ ℕ)
82a1i 11 . . 3 (𝐶 ∈ (𝑂𝐸) → 𝑁 ∈ ℕ)
97, 8nnaddcld 11683 . 2 (𝐶 ∈ (𝑂𝐸) → (𝑀 + 𝑁) ∈ ℕ)
10 ballotth.e . . . 4 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
111, 2, 3, 4, 5, 10ballotlemodife 31660 . . 3 (𝐶 ∈ (𝑂𝐸) ↔ (𝐶𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0))
1211simprbi 497 . 2 (𝐶 ∈ (𝑂𝐸) → ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑖) ≤ 0)
13 ballotth.mgtn . . . 4 𝑁 < 𝑀
142nnrei 11641 . . . . 5 𝑁 ∈ ℝ
151nnrei 11641 . . . . 5 𝑀 ∈ ℝ
1614, 15posdifi 11184 . . . 4 (𝑁 < 𝑀 ↔ 0 < (𝑀𝑁))
1713, 16mpbi 231 . . 3 0 < (𝑀𝑁)
181, 2, 3, 4, 5ballotlemfmpn 31657 . . . 4 (𝐶𝑂 → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
196, 18syl 17 . . 3 (𝐶 ∈ (𝑂𝐸) → ((𝐹𝐶)‘(𝑀 + 𝑁)) = (𝑀𝑁))
2017, 19breqtrrid 5101 . 2 (𝐶 ∈ (𝑂𝐸) → 0 < ((𝐹𝐶)‘(𝑀 + 𝑁)))
211, 2, 3, 4, 5, 6, 9, 12, 20ballotlemfc0 31655 1 (𝐶 ∈ (𝑂𝐸) → ∃𝑘 ∈ (1...(𝑀 + 𝑁))((𝐹𝐶)‘𝑘) = 0)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1530   ∈ wcel 2107  ∀wral 3143  ∃wrex 3144  {crab 3147   ∖ cdif 3937   ∩ cin 3939  𝒫 cpw 4542   class class class wbr 5063   ↦ cmpt 5143  ‘cfv 6354  (class class class)co 7150  0cc0 10531  1c1 10532   + caddc 10534   < clt 10669   ≤ cle 10670   − cmin 10864   / cdiv 11291  ℕcn 11632  ℤcz 11975  ...cfz 12887  ♯chash 13685 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-int 4875  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-dju 9324  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12888  df-hash 13686 This theorem is referenced by:  ballotlemiex  31664  ballotlemsup  31667
 Copyright terms: Public domain W3C validator