|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlem5 | Structured version Visualization version GIF version | ||
| Description: If A is not ahead throughout, there is a 𝑘 where votes are tied. (Contributed by Thierry Arnoux, 1-Dec-2016.) | 
| Ref | Expression | 
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ | 
| ballotth.n | ⊢ 𝑁 ∈ ℕ | 
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | 
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | 
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | 
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | 
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 | 
| Ref | Expression | 
|---|---|
| ballotlem5 | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑘 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑘) = 0) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ballotth.m | . 2 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . 2 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . 2 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . 2 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . 2 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | eldifi 4130 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝐶 ∈ 𝑂) | |
| 7 | 1 | a1i 11 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝑀 ∈ ℕ) | 
| 8 | 2 | a1i 11 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 𝑁 ∈ ℕ) | 
| 9 | 7, 8 | nnaddcld 12319 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℕ) | 
| 10 | ballotth.e | . . . 4 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 11 | 1, 2, 3, 4, 5, 10 | ballotlemodife 34501 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) ↔ (𝐶 ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0)) | 
| 12 | 11 | simprbi 496 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑖) ≤ 0) | 
| 13 | ballotth.mgtn | . . . 4 ⊢ 𝑁 < 𝑀 | |
| 14 | 2 | nnrei 12276 | . . . . 5 ⊢ 𝑁 ∈ ℝ | 
| 15 | 1 | nnrei 12276 | . . . . 5 ⊢ 𝑀 ∈ ℝ | 
| 16 | 14, 15 | posdifi 11814 | . . . 4 ⊢ (𝑁 < 𝑀 ↔ 0 < (𝑀 − 𝑁)) | 
| 17 | 13, 16 | mpbi 230 | . . 3 ⊢ 0 < (𝑀 − 𝑁) | 
| 18 | 1, 2, 3, 4, 5 | ballotlemfmpn 34498 | . . . 4 ⊢ (𝐶 ∈ 𝑂 → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) | 
| 19 | 6, 18 | syl 17 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘𝐶)‘(𝑀 + 𝑁)) = (𝑀 − 𝑁)) | 
| 20 | 17, 19 | breqtrrid 5180 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 0 < ((𝐹‘𝐶)‘(𝑀 + 𝑁))) | 
| 21 | 1, 2, 3, 4, 5, 6, 9, 12, 20 | ballotlemfc0 34496 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑘 ∈ (1...(𝑀 + 𝑁))((𝐹‘𝐶)‘𝑘) = 0) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 {crab 3435 ∖ cdif 3947 ∩ cin 3949 𝒫 cpw 4599 class class class wbr 5142 ↦ cmpt 5224 ‘cfv 6560 (class class class)co 7432 0cc0 11156 1c1 11157 + caddc 11159 < clt 11296 ≤ cle 11297 − cmin 11493 / cdiv 11921 ℕcn 12267 ℤcz 12615 ...cfz 13548 ♯chash 14370 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-oadd 8511 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-dju 9942 df-card 9980 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-n0 12529 df-z 12616 df-uz 12880 df-fz 13549 df-hash 14371 | 
| This theorem is referenced by: ballotlemiex 34505 ballotlemsup 34508 | 
| Copyright terms: Public domain | W3C validator |