MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod0 Structured version   Visualization version   GIF version

Theorem mod0 13234
Description: 𝐴 mod 𝐵 is zero iff 𝐴 is evenly divisible by 𝐵. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Fan Zheng, 7-Jun-2016.)
Assertion
Ref Expression
mod0 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))

Proof of Theorem mod0
StepHypRef Expression
1 modval 13229 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
21eqeq1d 2828 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0))
3 recn 10616 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
43adantr 481 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
5 rpre 12387 . . . . . . . 8 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
65adantl 482 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
7 refldivcl 13183 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
86, 7remulcld 10660 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
98recnd 10658 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
104, 9subeq0ad 10996 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
112, 10bitrd 280 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
12 eqcom 2833 . . . 4 ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))
137recnd 10658 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
14 rpcnne0 12397 . . . . . 6 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1514adantl 482 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
16 divmul2 11291 . . . . 5 ((𝐴 ∈ ℂ ∧ (⌊‘(𝐴 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
174, 13, 15, 16syl3anc 1365 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
1812, 17syl5rbbr 287 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)))
1911, 18bitrd 280 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)))
20 rerpdivcl 12409 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
21 flidz 13170 . . 3 ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ))
2220, 21syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ))
2319, 22bitrd 280 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 / 𝐵) ∈ ℤ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3021  cfv 6352  (class class class)co 7148  cc 10524  cr 10525  0cc0 10526   · cmul 10531  cmin 10859   / cdiv 11286  cz 11970  +crp 12379  cfl 13150   mod cmo 13227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6146  df-ord 6192  df-on 6193  df-lim 6194  df-suc 6195  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7569  df-wrecs 7938  df-recs 7999  df-rdg 8037  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11628  df-n0 11887  df-z 11971  df-uz 12233  df-rp 12380  df-fl 13152  df-mod 13228
This theorem is referenced by:  mulmod0  13235  negmod0  13236  modid0  13255  2txmodxeq0  13289  addmodlteq  13304  dvdsval3  15601  mod2eq1n2dvds  15686  elqaalem2  24824  elqaalem3  24825  sineq0  25024  pellexlem6  39296  sineq0ALT  41136  oddfl  41408  dirker2re  42243  dirkerdenne0  42244  dirkertrigeqlem3  42251  dirkertrigeq  42252  dirkercncflem1  42254  dirkercncflem2  42255  dirkercncflem4  42257  fourierdlem24  42282  fourierswlem  42381  dfeven3  43655  dfodd4  43656  mod0mul  44411  dignn0fr  44493  digexp  44499  0dig2nn0e  44504  dignn0flhalflem1  44507
  Copyright terms: Public domain W3C validator