Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > modirr | Structured version Visualization version GIF version |
Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
Ref | Expression |
---|---|
modirr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldif 3912 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ)) | |
2 | modval 13697 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
3 | 2 | eqeq1d 2739 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0)) |
4 | recn 11067 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
5 | 4 | adantr 482 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
6 | rpre 12844 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
7 | 6 | adantl 483 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
8 | refldivcl 13649 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
9 | 7, 8 | remulcld 11111 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ) |
10 | 9 | recnd 11109 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ) |
11 | 5, 10 | subeq0ad 11448 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
12 | rerpdivcl 12866 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
13 | reflcl 13622 | . . . . . . . . . . 11 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
14 | 13 | recnd 11109 | . . . . . . . . . 10 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
15 | 12, 14 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
16 | rpcnne0 12854 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
17 | 16 | adantl 483 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
18 | divmul2 11743 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (⌊‘(𝐴 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
19 | 5, 15, 17, 18 | syl3anc 1371 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
20 | eqcom 2744 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
21 | 19, 20 | bitr3di 286 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
22 | 3, 11, 21 | 3bitrd 305 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
23 | flidz 13636 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
24 | zq 12800 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℤ → (𝐴 / 𝐵) ∈ ℚ) | |
25 | 23, 24 | syl6bi 253 | . . . . . . 7 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
26 | 12, 25 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
27 | 22, 26 | sylbid 239 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 → (𝐴 / 𝐵) ∈ ℚ)) |
28 | 27 | necon3bd 2955 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (¬ (𝐴 / 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ≠ 0)) |
29 | 28 | adantld 492 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
30 | 1, 29 | biimtrid 241 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
31 | 30 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ∖ cdif 3899 ‘cfv 6484 (class class class)co 7342 ℂcc 10975 ℝcr 10976 0cc0 10977 · cmul 10982 − cmin 11311 / cdiv 11738 ℤcz 12425 ℚcq 12794 ℝ+crp 12836 ⌊cfl 13616 mod cmo 13695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-sup 9304 df-inf 9305 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-n0 12340 df-z 12426 df-uz 12689 df-q 12795 df-rp 12837 df-fl 13618 df-mod 13696 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |