| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modirr | Structured version Visualization version GIF version | ||
| Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| modirr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3961 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ)) | |
| 2 | modval 13911 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 3 | 2 | eqeq1d 2739 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0)) |
| 4 | recn 11245 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpre 13043 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
| 8 | refldivcl 13863 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 9 | 7, 8 | remulcld 11291 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ) |
| 10 | 9 | recnd 11289 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ) |
| 11 | 5, 10 | subeq0ad 11630 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 12 | rerpdivcl 13065 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 13 | reflcl 13836 | . . . . . . . . . . 11 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 14 | 13 | recnd 11289 | . . . . . . . . . 10 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
| 15 | 12, 14 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
| 16 | rpcnne0 13053 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 18 | divmul2 11926 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (⌊‘(𝐴 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 19 | 5, 15, 17, 18 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 20 | eqcom 2744 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
| 21 | 19, 20 | bitr3di 286 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
| 22 | 3, 11, 21 | 3bitrd 305 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
| 23 | flidz 13850 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
| 24 | zq 12996 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℤ → (𝐴 / 𝐵) ∈ ℚ) | |
| 25 | 23, 24 | biimtrdi 253 | . . . . . . 7 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
| 26 | 12, 25 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
| 27 | 22, 26 | sylbid 240 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 → (𝐴 / 𝐵) ∈ ℚ)) |
| 28 | 27 | necon3bd 2954 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (¬ (𝐴 / 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ≠ 0)) |
| 29 | 28 | adantld 490 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
| 30 | 1, 29 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
| 31 | 30 | 3impia 1118 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 ℝcr 11154 0cc0 11155 · cmul 11160 − cmin 11492 / cdiv 11920 ℤcz 12613 ℚcq 12990 ℝ+crp 13034 ⌊cfl 13830 mod cmo 13909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-sup 9482 df-inf 9483 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-fl 13832 df-mod 13910 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |