| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > modirr | Structured version Visualization version GIF version | ||
| Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.) |
| Ref | Expression |
|---|---|
| modirr | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldif 3910 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ)) | |
| 2 | modval 13767 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 3 | 2 | eqeq1d 2732 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0)) |
| 4 | recn 11088 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 5 | 4 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ) |
| 6 | rpre 12891 | . . . . . . . . . . 11 ⊢ (𝐵 ∈ ℝ+ → 𝐵 ∈ ℝ) | |
| 7 | 6 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ) |
| 8 | refldivcl 13719 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 9 | 7, 8 | remulcld 11134 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ) |
| 10 | 9 | recnd 11132 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ) |
| 11 | 5, 10 | subeq0ad 11474 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 12 | rerpdivcl 12914 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ) | |
| 13 | reflcl 13692 | . . . . . . . . . . 11 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ) | |
| 14 | 13 | recnd 11132 | . . . . . . . . . 10 ⊢ ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
| 15 | 12, 14 | syl 17 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ) |
| 16 | rpcnne0 12901 | . . . . . . . . . 10 ⊢ (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) | |
| 17 | 16 | adantl 481 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) |
| 18 | divmul2 11772 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ (⌊‘(𝐴 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) | |
| 19 | 5, 15, 17, 18 | syl3anc 1373 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))))) |
| 20 | eqcom 2737 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)) | |
| 21 | 19, 20 | bitr3di 286 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
| 22 | 3, 11, 21 | 3bitrd 305 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))) |
| 23 | flidz 13706 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ)) | |
| 24 | zq 12844 | . . . . . . . 8 ⊢ ((𝐴 / 𝐵) ∈ ℤ → (𝐴 / 𝐵) ∈ ℚ) | |
| 25 | 23, 24 | biimtrdi 253 | . . . . . . 7 ⊢ ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
| 26 | 12, 25 | syl 17 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ)) |
| 27 | 22, 26 | sylbid 240 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 → (𝐴 / 𝐵) ∈ ℚ)) |
| 28 | 27 | necon3bd 2940 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (¬ (𝐴 / 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ≠ 0)) |
| 29 | 28 | adantld 490 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
| 30 | 1, 29 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) → (𝐴 mod 𝐵) ≠ 0)) |
| 31 | 30 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∖ cdif 3897 ‘cfv 6477 (class class class)co 7341 ℂcc 10996 ℝcr 10997 0cc0 10998 · cmul 11003 − cmin 11336 / cdiv 11766 ℤcz 12460 ℚcq 12838 ℝ+crp 12882 ⌊cfl 13686 mod cmo 13765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-inf 9322 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-n0 12374 df-z 12461 df-uz 12725 df-q 12839 df-rp 12883 df-fl 13688 df-mod 13766 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |