MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modirr Structured version   Visualization version   GIF version

Theorem modirr 13768
Description: A number modulo an irrational multiple of it is nonzero. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
modirr ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0)

Proof of Theorem modirr
StepHypRef Expression
1 eldif 3912 . . 3 ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) ↔ ((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ))
2 modval 13697 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 mod 𝐵) = (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))))
32eqeq1d 2739 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0))
4 recn 11067 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
54adantr 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐴 ∈ ℂ)
6 rpre 12844 . . . . . . . . . . 11 (𝐵 ∈ ℝ+𝐵 ∈ ℝ)
76adantl 483 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → 𝐵 ∈ ℝ)
8 refldivcl 13649 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
97, 8remulcld 11111 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℝ)
109recnd 11109 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 · (⌊‘(𝐴 / 𝐵))) ∈ ℂ)
115, 10subeq0ad 11448 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 − (𝐵 · (⌊‘(𝐴 / 𝐵)))) = 0 ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
12 rerpdivcl 12866 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 / 𝐵) ∈ ℝ)
13 reflcl 13622 . . . . . . . . . . 11 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℝ)
1413recnd 11109 . . . . . . . . . 10 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
1512, 14syl 17 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (⌊‘(𝐴 / 𝐵)) ∈ ℂ)
16 rpcnne0 12854 . . . . . . . . . 10 (𝐵 ∈ ℝ+ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
1716adantl 483 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
18 divmul2 11743 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (⌊‘(𝐴 / 𝐵)) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
195, 15, 17, 18syl3anc 1371 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ 𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵)))))
20 eqcom 2744 . . . . . . . 8 ((𝐴 / 𝐵) = (⌊‘(𝐴 / 𝐵)) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵))
2119, 20bitr3di 286 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (𝐴 = (𝐵 · (⌊‘(𝐴 / 𝐵))) ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)))
223, 11, 213bitrd 305 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 ↔ (⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵)))
23 flidz 13636 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) ↔ (𝐴 / 𝐵) ∈ ℤ))
24 zq 12800 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℤ → (𝐴 / 𝐵) ∈ ℚ)
2523, 24syl6bi 253 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ))
2612, 25syl 17 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((⌊‘(𝐴 / 𝐵)) = (𝐴 / 𝐵) → (𝐴 / 𝐵) ∈ ℚ))
2722, 26sylbid 239 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 mod 𝐵) = 0 → (𝐴 / 𝐵) ∈ ℚ))
2827necon3bd 2955 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (¬ (𝐴 / 𝐵) ∈ ℚ → (𝐴 mod 𝐵) ≠ 0))
2928adantld 492 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → (((𝐴 / 𝐵) ∈ ℝ ∧ ¬ (𝐴 / 𝐵) ∈ ℚ) → (𝐴 mod 𝐵) ≠ 0))
301, 29biimtrid 241 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+) → ((𝐴 / 𝐵) ∈ (ℝ ∖ ℚ) → (𝐴 mod 𝐵) ≠ 0))
31303impia 1117 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ+ ∧ (𝐴 / 𝐵) ∈ (ℝ ∖ ℚ)) → (𝐴 mod 𝐵) ≠ 0)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1087   = wceq 1541  wcel 2106  wne 2941  cdif 3899  cfv 6484  (class class class)co 7342  cc 10975  cr 10976  0cc0 10977   · cmul 10982  cmin 11311   / cdiv 11738  cz 12425  cq 12794  +crp 12836  cfl 13616   mod cmo 13695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-sup 9304  df-inf 9305  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-n0 12340  df-z 12426  df-uz 12689  df-q 12795  df-rp 12837  df-fl 13618  df-mod 13696
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator