| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addeq0 | Structured version Visualization version GIF version | ||
| Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017.) |
| Ref | Expression |
|---|---|
| addeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cnd 11097 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℂ) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | 1, 2, 3 | subadd2d 11483 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐵) = 𝐴 ↔ (𝐴 + 𝐵) = 0)) |
| 5 | df-neg 11339 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 6 | 5 | eqeq1i 2735 | . . 3 ⊢ (-𝐵 = 𝐴 ↔ (0 − 𝐵) = 𝐴) |
| 7 | eqcom 2737 | . . 3 ⊢ (-𝐵 = 𝐴 ↔ 𝐴 = -𝐵) | |
| 8 | 6, 7 | bitr3i 277 | . 2 ⊢ ((0 − 𝐵) = 𝐴 ↔ 𝐴 = -𝐵) |
| 9 | 4, 8 | bitr3di 286 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 (class class class)co 7341 ℂcc 10996 0cc0 10998 + caddc 11001 − cmin 11336 -cneg 11337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-ltxr 11143 df-sub 11338 df-neg 11339 |
| This theorem is referenced by: constrrtcclem 33737 constrsqrtcl 33782 cos9thpiminplylem4 33788 cos9thpiminplylem5 33789 cos9thpinconstrlem1 33792 ballotlemfrceq 34532 sqrtcval 43653 rrx2linest 48753 itsclquadb 48787 |
| Copyright terms: Public domain | W3C validator |