| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addeq0 | Structured version Visualization version GIF version | ||
| Description: Two complex numbers add up to zero iff they are each other's opposites. (Contributed by Thierry Arnoux, 2-May-2017.) |
| Ref | Expression |
|---|---|
| addeq0 | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0cnd 11127 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 0 ∈ ℂ) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐵 ∈ ℂ) | |
| 3 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → 𝐴 ∈ ℂ) | |
| 4 | 1, 2, 3 | subadd2d 11512 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((0 − 𝐵) = 𝐴 ↔ (𝐴 + 𝐵) = 0)) |
| 5 | df-neg 11368 | . . . 4 ⊢ -𝐵 = (0 − 𝐵) | |
| 6 | 5 | eqeq1i 2734 | . . 3 ⊢ (-𝐵 = 𝐴 ↔ (0 − 𝐵) = 𝐴) |
| 7 | eqcom 2736 | . . 3 ⊢ (-𝐵 = 𝐴 ↔ 𝐴 = -𝐵) | |
| 8 | 6, 7 | bitr3i 277 | . 2 ⊢ ((0 − 𝐵) = 𝐴 ↔ 𝐴 = -𝐵) |
| 9 | 4, 8 | bitr3di 286 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7353 ℂcc 11026 0cc0 11028 + caddc 11031 − cmin 11365 -cneg 11366 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-po 5531 df-so 5532 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-ltxr 11173 df-sub 11367 df-neg 11368 |
| This theorem is referenced by: constrrtcclem 33700 constrsqrtcl 33745 cos9thpiminplylem4 33751 cos9thpiminplylem5 33752 cos9thpinconstrlem1 33755 ballotlemfrceq 34496 sqrtcval 43614 rrx2linest 48715 itsclquadb 48749 |
| Copyright terms: Public domain | W3C validator |