Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > affineequivne | Structured version Visualization version GIF version |
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶 if 𝐵 and 𝐶 are not equal. (Contributed by AV, 22-Jan-2023.) |
Ref | Expression |
---|---|
affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
affineequivne.d | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
Ref | Expression |
---|---|
affineequivne | ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
2 | affineequiv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
3 | affineequiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
4 | affineequiv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
5 | 1, 2, 3, 4 | affineequiv3 25956 | . 2 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
6 | 1, 2 | subcld 11315 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
7 | 3, 2 | subcld 11315 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
8 | affineequivne.d | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
9 | 8 | necomd 3000 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
10 | 3, 2, 9 | subne0d 11324 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐵) ≠ 0) |
11 | 6, 4, 7, 10 | divmul3d 11768 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) / (𝐶 − 𝐵)) = 𝐷 ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
12 | eqcom 2746 | . . 3 ⊢ (((𝐴 − 𝐵) / (𝐶 − 𝐵)) = 𝐷 ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵))) | |
13 | 11, 12 | bitr3di 285 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
14 | 5, 13 | bitrd 278 | 1 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 (class class class)co 7268 ℂcc 10853 1c1 10856 + caddc 10858 · cmul 10860 − cmin 11188 / cdiv 11615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 |
This theorem is referenced by: affinecomb1 46000 |
Copyright terms: Public domain | W3C validator |