MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  affineequivne Structured version   Visualization version   GIF version

Theorem affineequivne 26789
Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶 if 𝐵 and 𝐶 are not equal. (Contributed by AV, 22-Jan-2023.)
Hypotheses
Ref Expression
affineequiv.a (𝜑𝐴 ∈ ℂ)
affineequiv.b (𝜑𝐵 ∈ ℂ)
affineequiv.c (𝜑𝐶 ∈ ℂ)
affineequiv.d (𝜑𝐷 ∈ ℂ)
affineequivne.d (𝜑𝐵𝐶)
Assertion
Ref Expression
affineequivne (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴𝐵) / (𝐶𝐵))))

Proof of Theorem affineequivne
StepHypRef Expression
1 affineequiv.a . . 3 (𝜑𝐴 ∈ ℂ)
2 affineequiv.b . . 3 (𝜑𝐵 ∈ ℂ)
3 affineequiv.c . . 3 (𝜑𝐶 ∈ ℂ)
4 affineequiv.d . . 3 (𝜑𝐷 ∈ ℂ)
51, 2, 3, 4affineequiv3 26787 . 2 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
61, 2subcld 11594 . . . 4 (𝜑 → (𝐴𝐵) ∈ ℂ)
73, 2subcld 11594 . . . 4 (𝜑 → (𝐶𝐵) ∈ ℂ)
8 affineequivne.d . . . . . 6 (𝜑𝐵𝐶)
98necomd 2987 . . . . 5 (𝜑𝐶𝐵)
103, 2, 9subne0d 11603 . . . 4 (𝜑 → (𝐶𝐵) ≠ 0)
116, 4, 7, 10divmul3d 12051 . . 3 (𝜑 → (((𝐴𝐵) / (𝐶𝐵)) = 𝐷 ↔ (𝐴𝐵) = (𝐷 · (𝐶𝐵))))
12 eqcom 2742 . . 3 (((𝐴𝐵) / (𝐶𝐵)) = 𝐷𝐷 = ((𝐴𝐵) / (𝐶𝐵)))
1311, 12bitr3di 286 . 2 (𝜑 → ((𝐴𝐵) = (𝐷 · (𝐶𝐵)) ↔ 𝐷 = ((𝐴𝐵) / (𝐶𝐵))))
145, 13bitrd 279 1 (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴𝐵) / (𝐶𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2932  (class class class)co 7405  cc 11127  1c1 11130   + caddc 11132   · cmul 11134  cmin 11466   / cdiv 11894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895
This theorem is referenced by:  affinecomb1  48682
  Copyright terms: Public domain W3C validator