| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > affineequivne | Structured version Visualization version GIF version | ||
| Description: Equivalence between two ways of expressing 𝐴 as an affine combination of 𝐵 and 𝐶 if 𝐵 and 𝐶 are not equal. (Contributed by AV, 22-Jan-2023.) |
| Ref | Expression |
|---|---|
| affineequiv.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| affineequiv.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| affineequiv.c | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| affineequiv.d | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| affineequivne.d | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| Ref | Expression |
|---|---|
| affineequivne | ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | affineequiv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | affineequiv.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | affineequiv.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | affineequiv.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | 1, 2, 3, 4 | affineequiv3 26772 | . 2 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
| 6 | 1, 2 | subcld 11482 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 7 | 3, 2 | subcld 11482 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐵) ∈ ℂ) |
| 8 | affineequivne.d | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 9 | 8 | necomd 2985 | . . . . 5 ⊢ (𝜑 → 𝐶 ≠ 𝐵) |
| 10 | 3, 2, 9 | subne0d 11491 | . . . 4 ⊢ (𝜑 → (𝐶 − 𝐵) ≠ 0) |
| 11 | 6, 4, 7, 10 | divmul3d 11941 | . . 3 ⊢ (𝜑 → (((𝐴 − 𝐵) / (𝐶 − 𝐵)) = 𝐷 ↔ (𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)))) |
| 12 | eqcom 2740 | . . 3 ⊢ (((𝐴 − 𝐵) / (𝐶 − 𝐵)) = 𝐷 ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵))) | |
| 13 | 11, 12 | bitr3di 286 | . 2 ⊢ (𝜑 → ((𝐴 − 𝐵) = (𝐷 · (𝐶 − 𝐵)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
| 14 | 5, 13 | bitrd 279 | 1 ⊢ (𝜑 → (𝐴 = (((1 − 𝐷) · 𝐵) + (𝐷 · 𝐶)) ↔ 𝐷 = ((𝐴 − 𝐵) / (𝐶 − 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2113 ≠ wne 2930 (class class class)co 7355 ℂcc 11014 1c1 11017 + caddc 11019 · cmul 11021 − cmin 11354 / cdiv 11784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11073 ax-1cn 11074 ax-icn 11075 ax-addcl 11076 ax-addrcl 11077 ax-mulcl 11078 ax-mulrcl 11079 ax-mulcom 11080 ax-addass 11081 ax-mulass 11082 ax-distr 11083 ax-i2m1 11084 ax-1ne0 11085 ax-1rid 11086 ax-rnegex 11087 ax-rrecex 11088 ax-cnre 11089 ax-pre-lttri 11090 ax-pre-lttrn 11091 ax-pre-ltadd 11092 ax-pre-mulgt0 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-nel 3035 df-ral 3050 df-rex 3059 df-rmo 3348 df-reu 3349 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-po 5529 df-so 5530 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-er 8631 df-en 8879 df-dom 8880 df-sdom 8881 df-pnf 11158 df-mnf 11159 df-xr 11160 df-ltxr 11161 df-le 11162 df-sub 11356 df-neg 11357 df-div 11785 |
| This theorem is referenced by: affinecomb1 48817 |
| Copyright terms: Public domain | W3C validator |