Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmetcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
xmetcl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 23085 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | fovrn 7337 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
3 | 1, 2 | syl3an1 1164 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 ∈ wcel 2114 × cxp 5524 ⟶wf 6336 ‘cfv 6340 (class class class)co 7173 ℝ*cxr 10755 ∞Metcxmet 20205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7482 ax-cnex 10674 ax-resscn 10675 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-rab 3063 df-v 3401 df-sbc 3682 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-op 4524 df-uni 4798 df-br 5032 df-opab 5094 df-mpt 5112 df-id 5430 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-fv 6348 df-ov 7176 df-oprab 7177 df-mpo 7178 df-map 8442 df-xr 10760 df-xmet 20213 |
This theorem is referenced by: xmetge0 23100 xmetlecl 23102 xmetsym 23103 xmetrtri 23111 xmetrtri2 23112 xmetgt0 23114 prdsdsf 23123 prdsxmetlem 23124 imasdsf1olem 23129 imasf1oxmet 23131 xpsdsval 23137 xblpnf 23152 bldisj 23154 blgt0 23155 xblss2 23158 blhalf 23161 xbln0 23170 blin 23177 blss 23181 xmscl 23218 prdsbl 23247 blsscls2 23260 blcld 23261 blcls 23262 comet 23269 stdbdxmet 23271 stdbdmet 23272 stdbdbl 23273 tmsxpsval2 23295 metcnpi3 23302 txmetcnp 23303 xrsmopn 23567 metdcnlem 23591 metdsf 23603 metdsge 23604 metdstri 23606 metdsle 23607 metdscnlem 23610 metnrmlem1 23614 metnrmlem3 23616 lmnn 24018 iscfil2 24021 iscau3 24033 dvlip2 24750 heicant 35458 |
Copyright terms: Public domain | W3C validator |