| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmetcl | Structured version Visualization version GIF version | ||
| Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
| Ref | Expression |
|---|---|
| xmetcl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetf 24244 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
| 2 | fovcdm 7516 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
| 3 | 1, 2 | syl3an1 1163 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 × cxp 5612 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℝ*cxr 11145 ∞Metcxmet 21276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-xr 11150 df-xmet 21284 |
| This theorem is referenced by: xmetge0 24259 xmetlecl 24261 xmetsym 24262 xmetrtri 24270 xmetrtri2 24271 xmetgt0 24273 prdsdsf 24282 prdsxmetlem 24283 imasdsf1olem 24288 imasf1oxmet 24290 xpsdsval 24296 xblpnf 24311 bldisj 24313 blgt0 24314 xblss2 24317 blhalf 24320 xbln0 24329 blin 24336 blss 24340 xmscl 24377 prdsbl 24406 blsscls2 24419 blcld 24420 blcls 24421 comet 24428 stdbdxmet 24430 stdbdmet 24431 stdbdbl 24432 tmsxpsval2 24454 metcnpi3 24461 txmetcnp 24462 xrsmopn 24728 metdcnlem 24752 metdsf 24764 metdsge 24765 metdstri 24767 metdsle 24768 metdscnlem 24771 metnrmlem1 24775 metnrmlem3 24777 lmnn 25190 iscfil2 25193 iscau3 25205 dvlip2 25927 heicant 37705 |
| Copyright terms: Public domain | W3C validator |