MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetcl Structured version   Visualization version   GIF version

Theorem xmetcl 24357
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
xmetcl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)

Proof of Theorem xmetcl
StepHypRef Expression
1 xmetf 24355 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fovcdm 7603 . 2 ((𝐷:(𝑋 × 𝑋)⟶ℝ*𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
31, 2syl3an1 1162 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106   × cxp 5687  wf 6559  cfv 6563  (class class class)co 7431  *cxr 11292  ∞Metcxmet 21367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8867  df-xr 11297  df-xmet 21375
This theorem is referenced by:  xmetge0  24370  xmetlecl  24372  xmetsym  24373  xmetrtri  24381  xmetrtri2  24382  xmetgt0  24384  prdsdsf  24393  prdsxmetlem  24394  imasdsf1olem  24399  imasf1oxmet  24401  xpsdsval  24407  xblpnf  24422  bldisj  24424  blgt0  24425  xblss2  24428  blhalf  24431  xbln0  24440  blin  24447  blss  24451  xmscl  24488  prdsbl  24520  blsscls2  24533  blcld  24534  blcls  24535  comet  24542  stdbdxmet  24544  stdbdmet  24545  stdbdbl  24546  tmsxpsval2  24568  metcnpi3  24575  txmetcnp  24576  xrsmopn  24848  metdcnlem  24872  metdsf  24884  metdsge  24885  metdstri  24887  metdsle  24888  metdscnlem  24891  metnrmlem1  24895  metnrmlem3  24897  lmnn  25311  iscfil2  25314  iscau3  25326  dvlip2  26049  heicant  37642
  Copyright terms: Public domain W3C validator