MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetcl Structured version   Visualization version   GIF version

Theorem xmetcl 24275
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
xmetcl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)

Proof of Theorem xmetcl
StepHypRef Expression
1 xmetf 24273 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fovcdm 7582 . 2 ((𝐷:(𝑋 × 𝑋)⟶ℝ*𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
31, 2syl3an1 1163 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2109   × cxp 5657  wf 6532  cfv 6536  (class class class)co 7410  *cxr 11273  ∞Metcxmet 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-xr 11278  df-xmet 21313
This theorem is referenced by:  xmetge0  24288  xmetlecl  24290  xmetsym  24291  xmetrtri  24299  xmetrtri2  24300  xmetgt0  24302  prdsdsf  24311  prdsxmetlem  24312  imasdsf1olem  24317  imasf1oxmet  24319  xpsdsval  24325  xblpnf  24340  bldisj  24342  blgt0  24343  xblss2  24346  blhalf  24349  xbln0  24358  blin  24365  blss  24369  xmscl  24406  prdsbl  24435  blsscls2  24448  blcld  24449  blcls  24450  comet  24457  stdbdxmet  24459  stdbdmet  24460  stdbdbl  24461  tmsxpsval2  24483  metcnpi3  24490  txmetcnp  24491  xrsmopn  24757  metdcnlem  24781  metdsf  24793  metdsge  24794  metdstri  24796  metdsle  24797  metdscnlem  24800  metnrmlem1  24804  metnrmlem3  24806  lmnn  25220  iscfil2  25223  iscau3  25235  dvlip2  25957  heicant  37684
  Copyright terms: Public domain W3C validator