Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xmetcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
xmetcl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 23482 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | fovrn 7442 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
3 | 1, 2 | syl3an1 1162 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2106 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝ*cxr 11008 ∞Metcxmet 20582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-xr 11013 df-xmet 20590 |
This theorem is referenced by: xmetge0 23497 xmetlecl 23499 xmetsym 23500 xmetrtri 23508 xmetrtri2 23509 xmetgt0 23511 prdsdsf 23520 prdsxmetlem 23521 imasdsf1olem 23526 imasf1oxmet 23528 xpsdsval 23534 xblpnf 23549 bldisj 23551 blgt0 23552 xblss2 23555 blhalf 23558 xbln0 23567 blin 23574 blss 23578 xmscl 23615 prdsbl 23647 blsscls2 23660 blcld 23661 blcls 23662 comet 23669 stdbdxmet 23671 stdbdmet 23672 stdbdbl 23673 tmsxpsval2 23695 metcnpi3 23702 txmetcnp 23703 xrsmopn 23975 metdcnlem 23999 metdsf 24011 metdsge 24012 metdstri 24014 metdsle 24015 metdscnlem 24018 metnrmlem1 24022 metnrmlem3 24024 lmnn 24427 iscfil2 24430 iscau3 24442 dvlip2 25159 heicant 35812 |
Copyright terms: Public domain | W3C validator |