MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmetcl Structured version   Visualization version   GIF version

Theorem xmetcl 24341
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.)
Assertion
Ref Expression
xmetcl ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)

Proof of Theorem xmetcl
StepHypRef Expression
1 xmetf 24339 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
2 fovcdm 7603 . 2 ((𝐷:(𝑋 × 𝑋)⟶ℝ*𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
31, 2syl3an1 1164 1 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087  wcel 2108   × cxp 5683  wf 6557  cfv 6561  (class class class)co 7431  *cxr 11294  ∞Metcxmet 21349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-xr 11299  df-xmet 21357
This theorem is referenced by:  xmetge0  24354  xmetlecl  24356  xmetsym  24357  xmetrtri  24365  xmetrtri2  24366  xmetgt0  24368  prdsdsf  24377  prdsxmetlem  24378  imasdsf1olem  24383  imasf1oxmet  24385  xpsdsval  24391  xblpnf  24406  bldisj  24408  blgt0  24409  xblss2  24412  blhalf  24415  xbln0  24424  blin  24431  blss  24435  xmscl  24472  prdsbl  24504  blsscls2  24517  blcld  24518  blcls  24519  comet  24526  stdbdxmet  24528  stdbdmet  24529  stdbdbl  24530  tmsxpsval2  24552  metcnpi3  24559  txmetcnp  24560  xrsmopn  24834  metdcnlem  24858  metdsf  24870  metdsge  24871  metdstri  24873  metdsle  24874  metdscnlem  24877  metnrmlem1  24881  metnrmlem3  24883  lmnn  25297  iscfil2  25300  iscau3  25312  dvlip2  26034  heicant  37662
  Copyright terms: Public domain W3C validator