![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetcl | Structured version Visualization version GIF version |
Description: Closure of the distance function of a metric space. Part of Property M1 of [Kreyszig] p. 3. (Contributed by NM, 30-Aug-2006.) |
Ref | Expression |
---|---|
xmetcl | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetf 24279 | . 2 ⊢ (𝐷 ∈ (∞Met‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*) | |
2 | fovcdm 7591 | . 2 ⊢ ((𝐷:(𝑋 × 𝑋)⟶ℝ* ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
3 | 1, 2 | syl3an1 1160 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1084 ∈ wcel 2098 × cxp 5676 ⟶wf 6545 ‘cfv 6549 (class class class)co 7419 ℝ*cxr 11279 ∞Metcxmet 21281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-map 8847 df-xr 11284 df-xmet 21289 |
This theorem is referenced by: xmetge0 24294 xmetlecl 24296 xmetsym 24297 xmetrtri 24305 xmetrtri2 24306 xmetgt0 24308 prdsdsf 24317 prdsxmetlem 24318 imasdsf1olem 24323 imasf1oxmet 24325 xpsdsval 24331 xblpnf 24346 bldisj 24348 blgt0 24349 xblss2 24352 blhalf 24355 xbln0 24364 blin 24371 blss 24375 xmscl 24412 prdsbl 24444 blsscls2 24457 blcld 24458 blcls 24459 comet 24466 stdbdxmet 24468 stdbdmet 24469 stdbdbl 24470 tmsxpsval2 24492 metcnpi3 24499 txmetcnp 24500 xrsmopn 24772 metdcnlem 24796 metdsf 24808 metdsge 24809 metdstri 24811 metdsle 24812 metdscnlem 24815 metnrmlem1 24819 metnrmlem3 24821 lmnn 25235 iscfil2 25238 iscau3 25250 dvlip2 25972 heicant 37259 |
Copyright terms: Public domain | W3C validator |