MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Visualization version   GIF version

Theorem xrsmopn 23881
Description: The metric on the extended reals generates a topology, but this does not match the order topology on *; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
xrsmopn.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
xrsmopn (ordTop‘ ≤ ) ⊆ 𝐽

Proof of Theorem xrsmopn
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4868 . . . 4 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 (ordTop‘ ≤ ))
2 letopuni 22266 . . . 4 * = (ordTop‘ ≤ )
31, 2sseqtrrdi 3968 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 ⊆ ℝ*)
4 eqid 2738 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54rexmet 23860 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
6 letop 22265 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ Top
7 reex 10893 . . . . . . . . 9 ℝ ∈ V
8 elrestr 17056 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ )) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
96, 7, 8mp3an12 1449 . . . . . . . 8 (𝑥 ∈ (ordTop‘ ≤ ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
109ad2antrr 722 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
11 elin 3899 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦𝑥𝑦 ∈ ℝ))
1211biimpri 227 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
1312adantll 710 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
14 eqid 2738 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1514xrtgioo 23875 . . . . . . . . 9 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
16 eqid 2738 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
174, 16tgioo 23865 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1815, 17eqtr3i 2768 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1918mopni2 23555 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
205, 10, 13, 19mp3an2i 1464 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
21 xrsxmet.1 . . . . . . . . . . . 12 𝐷 = (dist‘ℝ*𝑠)
2221xrsxmet 23878 . . . . . . . . . . 11 𝐷 ∈ (∞Met‘ℝ*)
23 simplr 765 . . . . . . . . . . . 12 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ ℝ)
24 ressxr 10950 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
25 sseqin2 4146 . . . . . . . . . . . . 13 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
2624, 25mpbi 229 . . . . . . . . . . . 12 (ℝ* ∩ ℝ) = ℝ
2723, 26eleqtrrdi 2850 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ* ∩ ℝ))
28 rpxr 12668 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2928adantl 481 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
3021xrsdsre 23879 . . . . . . . . . . . . 13 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130eqcomi 2747 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ × ℝ))
3231blres 23492 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3322, 27, 29, 32mp3an2i 1464 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3421xrsblre 23880 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3528, 34sylan2 592 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3635adantll 710 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
37 df-ss 3900 . . . . . . . . . . 11 ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3836, 37sylib 217 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3933, 38eqtrd 2778 . . . . . . . . 9 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟))
4039sseq1d 3948 . . . . . . . 8 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ)))
41 inss1 4159 . . . . . . . . 9 (𝑥 ∩ ℝ) ⊆ 𝑥
42 sstr 3925 . . . . . . . . 9 (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4341, 42mpan2 687 . . . . . . . 8 ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4440, 43syl6bi 252 . . . . . . 7 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4544reximdva 3202 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4620, 45mpd 15 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
47 1rp 12663 . . . . . 6 1 ∈ ℝ+
483sselda 3917 . . . . . . . . . 10 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → 𝑦 ∈ ℝ*)
4948adantr 480 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 rpxr 12668 . . . . . . . . . 10 (1 ∈ ℝ+ → 1 ∈ ℝ*)
5147, 50mp1i 13 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈ ℝ*)
52 elbl 23449 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
5322, 49, 51, 52mp3an2i 1464 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
54 simp2 1135 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ)
55483ad2ant1 1131 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ*)
57 simpl3l 1226 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ*)
58 xmetcl 23392 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝐷𝑧) ∈ ℝ*)
5922, 56, 57, 58mp3an2i 1464 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ*)
60 1red 10907 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 1 ∈ ℝ)
61 xmetge0 23405 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → 0 ≤ (𝑦𝐷𝑧))
6222, 56, 57, 61mp3an2i 1464 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 0 ≤ (𝑦𝐷𝑧))
63 simpl3r 1227 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) < 1)
64 1xr 10965 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
65 xrltle 12812 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6659, 64, 65sylancl 585 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6763, 66mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ≤ 1)
68 xrrege0 12837 . . . . . . . . . . . . . . . 16 ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ)
6959, 60, 62, 67, 68syl22anc 835 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ)
70 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦𝑧)
7121xrsdsreclb 20557 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7256, 57, 70, 71syl3anc 1369 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7369, 72mpbid 231 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
7473simpld 494 . . . . . . . . . . . . 13 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
7574ex 412 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦𝑧𝑦 ∈ ℝ))
7675necon1bd 2960 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧))
77 simp1r 1196 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦𝑥)
78 elequ1 2115 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
7977, 78syl5ibcom 244 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧𝑧𝑥))
8076, 79syld 47 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧𝑥))
8154, 80mpd 15 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧𝑥)
82813expia 1119 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧𝑥))
8353, 82sylbid 239 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧𝑥))
8483ssrdv 3923 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥)
85 oveq2 7263 . . . . . . . 8 (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1))
8685sseq1d 3948 . . . . . . 7 (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥))
8786rspcev 3552 . . . . . 6 ((1 ∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8847, 84, 87sylancr 586 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8946, 88pm2.61dan 809 . . . 4 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
9089ralrimiva 3107 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
91 xrsmopn.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
9291elmopn2 23506 . . . 4 (𝐷 ∈ (∞Met‘ℝ*) → (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
9322, 92ax-mp 5 . . 3 (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
943, 90, 93sylanbrc 582 . 2 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥𝐽)
9594ssriv 3921 1 (ordTop‘ ≤ ) ⊆ 𝐽
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  cin 3882  wss 3883   cuni 4836   class class class wbr 5070   × cxp 5578  ran crn 5581  cres 5582  ccom 5584  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  *cxr 10939   < clt 10940  cle 10941  cmin 11135  +crp 12659  (,)cioo 13008  abscabs 14873  distcds 16897  t crest 17048  topGenctg 17065  ordTopcordt 17127  *𝑠cxrs 17128  ∞Metcxmet 20495  ballcbl 20497  MetOpencmopn 20500  Topctop 21950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-ec 8458  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fi 9100  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-tset 16907  df-ple 16908  df-ds 16910  df-rest 17050  df-topgen 17071  df-ordt 17129  df-xrs 17130  df-ps 18199  df-tsr 18200  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-top 21951  df-topon 21968  df-bases 22004
This theorem is referenced by:  xmetdcn  23907
  Copyright terms: Public domain W3C validator