MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Visualization version   GIF version

Theorem xrsmopn 24853
Description: The metric on the extended reals generates a topology, but this does not match the order topology on *; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
xrsmopn.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
xrsmopn (ordTop‘ ≤ ) ⊆ 𝐽

Proof of Theorem xrsmopn
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4961 . . . 4 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 (ordTop‘ ≤ ))
2 letopuni 23236 . . . 4 * = (ordTop‘ ≤ )
31, 2sseqtrrdi 4060 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 ⊆ ℝ*)
4 eqid 2740 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54rexmet 24832 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
6 letop 23235 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ Top
7 reex 11275 . . . . . . . . 9 ℝ ∈ V
8 elrestr 17488 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ )) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
96, 7, 8mp3an12 1451 . . . . . . . 8 (𝑥 ∈ (ordTop‘ ≤ ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
109ad2antrr 725 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
11 elin 3992 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦𝑥𝑦 ∈ ℝ))
1211biimpri 228 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
1312adantll 713 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
14 eqid 2740 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1514xrtgioo 24847 . . . . . . . . 9 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
16 eqid 2740 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
174, 16tgioo 24837 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1815, 17eqtr3i 2770 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1918mopni2 24527 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
205, 10, 13, 19mp3an2i 1466 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
21 xrsxmet.1 . . . . . . . . . . . 12 𝐷 = (dist‘ℝ*𝑠)
2221xrsxmet 24850 . . . . . . . . . . 11 𝐷 ∈ (∞Met‘ℝ*)
23 simplr 768 . . . . . . . . . . . 12 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ ℝ)
24 ressxr 11334 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
25 sseqin2 4244 . . . . . . . . . . . . 13 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
2624, 25mpbi 230 . . . . . . . . . . . 12 (ℝ* ∩ ℝ) = ℝ
2723, 26eleqtrrdi 2855 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ* ∩ ℝ))
28 rpxr 13066 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2928adantl 481 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
3021xrsdsre 24851 . . . . . . . . . . . . 13 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130eqcomi 2749 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ × ℝ))
3231blres 24462 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3322, 27, 29, 32mp3an2i 1466 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3421xrsblre 24852 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3528, 34sylan2 592 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3635adantll 713 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
37 dfss2 3994 . . . . . . . . . . 11 ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3836, 37sylib 218 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3933, 38eqtrd 2780 . . . . . . . . 9 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟))
4039sseq1d 4040 . . . . . . . 8 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ)))
41 inss1 4258 . . . . . . . . 9 (𝑥 ∩ ℝ) ⊆ 𝑥
42 sstr 4017 . . . . . . . . 9 (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4341, 42mpan2 690 . . . . . . . 8 ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4440, 43biimtrdi 253 . . . . . . 7 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4544reximdva 3174 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4620, 45mpd 15 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
47 1rp 13061 . . . . . 6 1 ∈ ℝ+
483sselda 4008 . . . . . . . . . 10 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → 𝑦 ∈ ℝ*)
4948adantr 480 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 rpxr 13066 . . . . . . . . . 10 (1 ∈ ℝ+ → 1 ∈ ℝ*)
5147, 50mp1i 13 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈ ℝ*)
52 elbl 24419 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
5322, 49, 51, 52mp3an2i 1466 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
54 simp2 1137 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ)
55483ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ*)
57 simpl3l 1228 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ*)
58 xmetcl 24362 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝐷𝑧) ∈ ℝ*)
5922, 56, 57, 58mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ*)
60 1red 11291 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 1 ∈ ℝ)
61 xmetge0 24375 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → 0 ≤ (𝑦𝐷𝑧))
6222, 56, 57, 61mp3an2i 1466 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 0 ≤ (𝑦𝐷𝑧))
63 simpl3r 1229 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) < 1)
64 1xr 11349 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
65 xrltle 13211 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6659, 64, 65sylancl 585 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6763, 66mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ≤ 1)
68 xrrege0 13236 . . . . . . . . . . . . . . . 16 ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ)
6959, 60, 62, 67, 68syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ)
70 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦𝑧)
7121xrsdsreclb 21454 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7256, 57, 70, 71syl3anc 1371 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7369, 72mpbid 232 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
7473simpld 494 . . . . . . . . . . . . 13 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
7574ex 412 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦𝑧𝑦 ∈ ℝ))
7675necon1bd 2964 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧))
77 simp1r 1198 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦𝑥)
78 elequ1 2115 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
7977, 78syl5ibcom 245 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧𝑧𝑥))
8076, 79syld 47 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧𝑥))
8154, 80mpd 15 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧𝑥)
82813expia 1121 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧𝑥))
8353, 82sylbid 240 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧𝑥))
8483ssrdv 4014 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥)
85 oveq2 7456 . . . . . . . 8 (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1))
8685sseq1d 4040 . . . . . . 7 (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥))
8786rspcev 3635 . . . . . 6 ((1 ∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8847, 84, 87sylancr 586 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8946, 88pm2.61dan 812 . . . 4 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
9089ralrimiva 3152 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
91 xrsmopn.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
9291elmopn2 24476 . . . 4 (𝐷 ∈ (∞Met‘ℝ*) → (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
9322, 92ax-mp 5 . . 3 (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
943, 90, 93sylanbrc 582 . 2 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥𝐽)
9594ssriv 4012 1 (ordTop‘ ≤ ) ⊆ 𝐽
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976   cuni 4931   class class class wbr 5166   × cxp 5698  ran crn 5701  cres 5702  ccom 5704  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  cle 11325  cmin 11520  +crp 13057  (,)cioo 13407  abscabs 15283  distcds 17320  t crest 17480  topGenctg 17497  ordTopcordt 17559  *𝑠cxrs 17560  ∞Metcxmet 21372  ballcbl 21374  MetOpencmopn 21377  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-ec 8765  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fi 9480  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-tset 17330  df-ple 17331  df-ds 17333  df-rest 17482  df-topgen 17503  df-ordt 17561  df-xrs 17562  df-ps 18636  df-tsr 18637  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-top 22921  df-topon 22938  df-bases 22974
This theorem is referenced by:  xmetdcn  24879
  Copyright terms: Public domain W3C validator