MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Visualization version   GIF version

Theorem xrsmopn 24699
Description: The metric on the extended reals generates a topology, but this does not match the order topology on *; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
xrsmopn.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
xrsmopn (ordTop‘ ≤ ) ⊆ 𝐽

Proof of Theorem xrsmopn
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4888 . . . 4 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 (ordTop‘ ≤ ))
2 letopuni 23092 . . . 4 * = (ordTop‘ ≤ )
31, 2sseqtrrdi 3977 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 ⊆ ℝ*)
4 eqid 2729 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54rexmet 24677 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
6 letop 23091 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ Top
7 reex 11100 . . . . . . . . 9 ℝ ∈ V
8 elrestr 17332 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ )) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
96, 7, 8mp3an12 1453 . . . . . . . 8 (𝑥 ∈ (ordTop‘ ≤ ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
109ad2antrr 726 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
11 elin 3919 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦𝑥𝑦 ∈ ℝ))
1211biimpri 228 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
1312adantll 714 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
14 eqid 2729 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1514xrtgioo 24693 . . . . . . . . 9 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
16 eqid 2729 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
174, 16tgioo 24682 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1815, 17eqtr3i 2754 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1918mopni2 24379 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
205, 10, 13, 19mp3an2i 1468 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
21 xrsxmet.1 . . . . . . . . . . . 12 𝐷 = (dist‘ℝ*𝑠)
2221xrsxmet 24696 . . . . . . . . . . 11 𝐷 ∈ (∞Met‘ℝ*)
23 simplr 768 . . . . . . . . . . . 12 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ ℝ)
24 ressxr 11159 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
25 sseqin2 4174 . . . . . . . . . . . . 13 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
2624, 25mpbi 230 . . . . . . . . . . . 12 (ℝ* ∩ ℝ) = ℝ
2723, 26eleqtrrdi 2839 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ* ∩ ℝ))
28 rpxr 12903 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2928adantl 481 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
3021xrsdsre 24697 . . . . . . . . . . . . 13 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130eqcomi 2738 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ × ℝ))
3231blres 24317 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3322, 27, 29, 32mp3an2i 1468 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3421xrsblre 24698 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3528, 34sylan2 593 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3635adantll 714 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
37 dfss2 3921 . . . . . . . . . . 11 ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3836, 37sylib 218 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3933, 38eqtrd 2764 . . . . . . . . 9 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟))
4039sseq1d 3967 . . . . . . . 8 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ)))
41 inss1 4188 . . . . . . . . 9 (𝑥 ∩ ℝ) ⊆ 𝑥
42 sstr 3944 . . . . . . . . 9 (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4341, 42mpan2 691 . . . . . . . 8 ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4440, 43biimtrdi 253 . . . . . . 7 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4544reximdva 3142 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4620, 45mpd 15 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
47 1rp 12897 . . . . . 6 1 ∈ ℝ+
483sselda 3935 . . . . . . . . . 10 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → 𝑦 ∈ ℝ*)
4948adantr 480 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 rpxr 12903 . . . . . . . . . 10 (1 ∈ ℝ+ → 1 ∈ ℝ*)
5147, 50mp1i 13 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈ ℝ*)
52 elbl 24274 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
5322, 49, 51, 52mp3an2i 1468 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
54 simp2 1137 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ)
55483ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ*)
57 simpl3l 1229 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ*)
58 xmetcl 24217 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝐷𝑧) ∈ ℝ*)
5922, 56, 57, 58mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ*)
60 1red 11116 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 1 ∈ ℝ)
61 xmetge0 24230 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → 0 ≤ (𝑦𝐷𝑧))
6222, 56, 57, 61mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 0 ≤ (𝑦𝐷𝑧))
63 simpl3r 1230 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) < 1)
64 1xr 11174 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
65 xrltle 13051 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6659, 64, 65sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6763, 66mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ≤ 1)
68 xrrege0 13076 . . . . . . . . . . . . . . . 16 ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ)
6959, 60, 62, 67, 68syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ)
70 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦𝑧)
7121xrsdsreclb 21320 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7256, 57, 70, 71syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7369, 72mpbid 232 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
7473simpld 494 . . . . . . . . . . . . 13 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
7574ex 412 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦𝑧𝑦 ∈ ℝ))
7675necon1bd 2943 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧))
77 simp1r 1199 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦𝑥)
78 elequ1 2116 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
7977, 78syl5ibcom 245 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧𝑧𝑥))
8076, 79syld 47 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧𝑥))
8154, 80mpd 15 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧𝑥)
82813expia 1121 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧𝑥))
8353, 82sylbid 240 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧𝑥))
8483ssrdv 3941 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥)
85 oveq2 7357 . . . . . . . 8 (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1))
8685sseq1d 3967 . . . . . . 7 (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥))
8786rspcev 3577 . . . . . 6 ((1 ∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8847, 84, 87sylancr 587 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8946, 88pm2.61dan 812 . . . 4 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
9089ralrimiva 3121 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
91 xrsmopn.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
9291elmopn2 24331 . . . 4 (𝐷 ∈ (∞Met‘ℝ*) → (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
9322, 92ax-mp 5 . . 3 (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
943, 90, 93sylanbrc 583 . 2 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥𝐽)
9594ssriv 3939 1 (ordTop‘ ≤ ) ⊆ 𝐽
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3436  cin 3902  wss 3903   cuni 4858   class class class wbr 5092   × cxp 5617  ran crn 5620  cres 5621  ccom 5623  cfv 6482  (class class class)co 7349  cr 11008  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  cle 11150  cmin 11347  +crp 12893  (,)cioo 13248  abscabs 15141  distcds 17170  t crest 17324  topGenctg 17341  ordTopcordt 17403  *𝑠cxrs 17404  ∞Metcxmet 21246  ballcbl 21248  MetOpencmopn 21251  Topctop 22778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-ec 8627  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fi 9301  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-tset 17180  df-ple 17181  df-ds 17183  df-rest 17326  df-topgen 17347  df-ordt 17405  df-xrs 17406  df-ps 18472  df-tsr 18473  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-top 22779  df-topon 22796  df-bases 22831
This theorem is referenced by:  xmetdcn  24725
  Copyright terms: Public domain W3C validator