MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Visualization version   GIF version

Theorem xrsmopn 23420
Description: The metric on the extended reals generates a topology, but this does not match the order topology on *; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
xrsmopn.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
xrsmopn (ordTop‘ ≤ ) ⊆ 𝐽

Proof of Theorem xrsmopn
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4833 . . . 4 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 (ordTop‘ ≤ ))
2 letopuni 21815 . . . 4 * = (ordTop‘ ≤ )
31, 2sseqtrrdi 3969 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 ⊆ ℝ*)
4 eqid 2801 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54rexmet 23399 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
6 letop 21814 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ Top
7 reex 10621 . . . . . . . . 9 ℝ ∈ V
8 elrestr 16697 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ )) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
96, 7, 8mp3an12 1448 . . . . . . . 8 (𝑥 ∈ (ordTop‘ ≤ ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
109ad2antrr 725 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
11 elin 3900 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦𝑥𝑦 ∈ ℝ))
1211biimpri 231 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
1312adantll 713 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
14 eqid 2801 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1514xrtgioo 23414 . . . . . . . . 9 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
16 eqid 2801 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
174, 16tgioo 23404 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1815, 17eqtr3i 2826 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1918mopni2 23103 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
205, 10, 13, 19mp3an2i 1463 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
21 xrsxmet.1 . . . . . . . . . . . 12 𝐷 = (dist‘ℝ*𝑠)
2221xrsxmet 23417 . . . . . . . . . . 11 𝐷 ∈ (∞Met‘ℝ*)
23 simplr 768 . . . . . . . . . . . 12 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ ℝ)
24 ressxr 10678 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
25 sseqin2 4145 . . . . . . . . . . . . 13 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
2624, 25mpbi 233 . . . . . . . . . . . 12 (ℝ* ∩ ℝ) = ℝ
2723, 26eleqtrrdi 2904 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ* ∩ ℝ))
28 rpxr 12390 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2928adantl 485 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
3021xrsdsre 23418 . . . . . . . . . . . . 13 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130eqcomi 2810 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ × ℝ))
3231blres 23041 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3322, 27, 29, 32mp3an2i 1463 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3421xrsblre 23419 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3528, 34sylan2 595 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3635adantll 713 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
37 df-ss 3901 . . . . . . . . . . 11 ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3836, 37sylib 221 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3933, 38eqtrd 2836 . . . . . . . . 9 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟))
4039sseq1d 3949 . . . . . . . 8 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ)))
41 inss1 4158 . . . . . . . . 9 (𝑥 ∩ ℝ) ⊆ 𝑥
42 sstr 3926 . . . . . . . . 9 (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4341, 42mpan2 690 . . . . . . . 8 ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4440, 43syl6bi 256 . . . . . . 7 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4544reximdva 3236 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4620, 45mpd 15 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
47 1rp 12385 . . . . . 6 1 ∈ ℝ+
483sselda 3918 . . . . . . . . . 10 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → 𝑦 ∈ ℝ*)
4948adantr 484 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 rpxr 12390 . . . . . . . . . 10 (1 ∈ ℝ+ → 1 ∈ ℝ*)
5147, 50mp1i 13 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈ ℝ*)
52 elbl 22998 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
5322, 49, 51, 52mp3an2i 1463 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
54 simp2 1134 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ)
55483ad2ant1 1130 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*)
5655adantr 484 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ*)
57 simpl3l 1225 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ*)
58 xmetcl 22941 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝐷𝑧) ∈ ℝ*)
5922, 56, 57, 58mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ*)
60 1red 10635 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 1 ∈ ℝ)
61 xmetge0 22954 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → 0 ≤ (𝑦𝐷𝑧))
6222, 56, 57, 61mp3an2i 1463 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 0 ≤ (𝑦𝐷𝑧))
63 simpl3r 1226 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) < 1)
64 1xr 10693 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
65 xrltle 12534 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6659, 64, 65sylancl 589 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6763, 66mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ≤ 1)
68 xrrege0 12559 . . . . . . . . . . . . . . . 16 ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ)
6959, 60, 62, 67, 68syl22anc 837 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ)
70 simpr 488 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦𝑧)
7121xrsdsreclb 20141 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7256, 57, 70, 71syl3anc 1368 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7369, 72mpbid 235 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
7473simpld 498 . . . . . . . . . . . . 13 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
7574ex 416 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦𝑧𝑦 ∈ ℝ))
7675necon1bd 3008 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧))
77 simp1r 1195 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦𝑥)
78 elequ1 2119 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
7977, 78syl5ibcom 248 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧𝑧𝑥))
8076, 79syld 47 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧𝑥))
8154, 80mpd 15 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧𝑥)
82813expia 1118 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧𝑥))
8353, 82sylbid 243 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧𝑥))
8483ssrdv 3924 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥)
85 oveq2 7147 . . . . . . . 8 (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1))
8685sseq1d 3949 . . . . . . 7 (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥))
8786rspcev 3574 . . . . . 6 ((1 ∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8847, 84, 87sylancr 590 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8946, 88pm2.61dan 812 . . . 4 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
9089ralrimiva 3152 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
91 xrsmopn.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
9291elmopn2 23055 . . . 4 (𝐷 ∈ (∞Met‘ℝ*) → (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
9322, 92ax-mp 5 . . 3 (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
943, 90, 93sylanbrc 586 . 2 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥𝐽)
9594ssriv 3922 1 (ordTop‘ ≤ ) ⊆ 𝐽
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2112  wne 2990  wral 3109  wrex 3110  Vcvv 3444  cin 3883  wss 3884   cuni 4803   class class class wbr 5033   × cxp 5521  ran crn 5524  cres 5525  ccom 5527  cfv 6328  (class class class)co 7139  cr 10529  0cc0 10530  1c1 10531  *cxr 10667   < clt 10668  cle 10669  cmin 10863  +crp 12381  (,)cioo 12730  abscabs 14588  distcds 16569  t crest 16689  topGenctg 16706  ordTopcordt 16767  *𝑠cxrs 16768  ∞Metcxmet 20079  ballcbl 20081  MetOpencmopn 20084  Topctop 21501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-ec 8278  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-q 12341  df-rp 12382  df-xneg 12499  df-xadd 12500  df-xmul 12501  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-fz 12890  df-seq 13369  df-exp 13430  df-cj 14453  df-re 14454  df-im 14455  df-sqrt 14589  df-abs 14590  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-tset 16579  df-ple 16580  df-ds 16582  df-rest 16691  df-topgen 16712  df-ordt 16769  df-xrs 16770  df-ps 17805  df-tsr 17806  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-mopn 20090  df-top 21502  df-topon 21519  df-bases 21554
This theorem is referenced by:  xmetdcn  23446
  Copyright terms: Public domain W3C validator