Step | Hyp | Ref
| Expression |
1 | | elssuni 4868 |
. . . 4
⊢ (𝑥 ∈ (ordTop‘ ≤ )
→ 𝑥 ⊆ ∪ (ordTop‘ ≤ )) |
2 | | letopuni 22266 |
. . . 4
⊢
ℝ* = ∪ (ordTop‘ ≤
) |
3 | 1, 2 | sseqtrrdi 3968 |
. . 3
⊢ (𝑥 ∈ (ordTop‘ ≤ )
→ 𝑥 ⊆
ℝ*) |
4 | | eqid 2738 |
. . . . . . . 8
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − )
↾ (ℝ × ℝ)) |
5 | 4 | rexmet 23860 |
. . . . . . 7
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) |
6 | | letop 22265 |
. . . . . . . . 9
⊢
(ordTop‘ ≤ ) ∈ Top |
7 | | reex 10893 |
. . . . . . . . 9
⊢ ℝ
∈ V |
8 | | elrestr 17056 |
. . . . . . . . 9
⊢
(((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ ))
→ (𝑥 ∩ ℝ)
∈ ((ordTop‘ ≤ ) ↾t ℝ)) |
9 | 6, 7, 8 | mp3an12 1449 |
. . . . . . . 8
⊢ (𝑥 ∈ (ordTop‘ ≤ )
→ (𝑥 ∩ ℝ)
∈ ((ordTop‘ ≤ ) ↾t ℝ)) |
10 | 9 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ )
↾t ℝ)) |
11 | | elin 3899 |
. . . . . . . . 9
⊢ (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ)) |
12 | 11 | biimpri 227 |
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ)) |
13 | 12 | adantll 710 |
. . . . . . 7
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ)) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘
≤ ) ↾t ℝ) |
15 | 14 | xrtgioo 23875 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t
ℝ) |
16 | | eqid 2738 |
. . . . . . . . . 10
⊢
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
17 | 4, 16 | tgioo 23865 |
. . . . . . . . 9
⊢
(topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾
(ℝ × ℝ))) |
18 | 15, 17 | eqtr3i 2768 |
. . . . . . . 8
⊢
((ordTop‘ ≤ ) ↾t ℝ) =
(MetOpen‘((abs ∘ − ) ↾ (ℝ ×
ℝ))) |
19 | 18 | mopni2 23555 |
. . . . . . 7
⊢ ((((abs
∘ − ) ↾ (ℝ × ℝ)) ∈
(∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ )
↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ)) |
20 | 5, 10, 13, 19 | mp3an2i 1464 |
. . . . . 6
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ)) |
21 | | xrsxmet.1 |
. . . . . . . . . . . 12
⊢ 𝐷 =
(dist‘ℝ*𝑠) |
22 | 21 | xrsxmet 23878 |
. . . . . . . . . . 11
⊢ 𝐷 ∈
(∞Met‘ℝ*) |
23 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈
ℝ) |
24 | | ressxr 10950 |
. . . . . . . . . . . . 13
⊢ ℝ
⊆ ℝ* |
25 | | sseqin2 4146 |
. . . . . . . . . . . . 13
⊢ (ℝ
⊆ ℝ* ↔ (ℝ* ∩ ℝ) =
ℝ) |
26 | 24, 25 | mpbi 229 |
. . . . . . . . . . . 12
⊢
(ℝ* ∩ ℝ) = ℝ |
27 | 23, 26 | eleqtrrdi 2850 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ*
∩ ℝ)) |
28 | | rpxr 12668 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ ℝ+
→ 𝑟 ∈
ℝ*) |
29 | 28 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈
ℝ*) |
30 | 21 | xrsdsre 23879 |
. . . . . . . . . . . . 13
⊢ (𝐷 ↾ (ℝ ×
ℝ)) = ((abs ∘ − ) ↾ (ℝ ×
ℝ)) |
31 | 30 | eqcomi 2747 |
. . . . . . . . . . . 12
⊢ ((abs
∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ ×
ℝ)) |
32 | 31 | blres 23492 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈
(∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ)
∧ 𝑟 ∈
ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾
(ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ)) |
33 | 22, 27, 29, 32 | mp3an2i 1464 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ)) |
34 | 21 | xrsblre 23880 |
. . . . . . . . . . . . 13
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*)
→ (𝑦(ball‘𝐷)𝑟) ⊆ ℝ) |
35 | 28, 34 | sylan2 592 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+)
→ (𝑦(ball‘𝐷)𝑟) ⊆ ℝ) |
36 | 35 | adantll 710 |
. . . . . . . . . . 11
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ) |
37 | | df-ss 3900 |
. . . . . . . . . . 11
⊢ ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟)) |
38 | 36, 37 | sylib 217 |
. . . . . . . . . 10
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟)) |
39 | 33, 38 | eqtrd 2778 |
. . . . . . . . 9
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟)) |
40 | 39 | sseq1d 3948 |
. . . . . . . 8
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ))) |
41 | | inss1 4159 |
. . . . . . . . 9
⊢ (𝑥 ∩ ℝ) ⊆ 𝑥 |
42 | | sstr 3925 |
. . . . . . . . 9
⊢ (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
43 | 41, 42 | mpan2 687 |
. . . . . . . 8
⊢ ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
44 | 40, 43 | syl6bi 252 |
. . . . . . 7
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)) |
45 | 44 | reximdva 3202 |
. . . . . 6
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+
(𝑦(ball‘((abs ∘
− ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)) |
46 | 20, 45 | mpd 15 |
. . . . 5
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
47 | | 1rp 12663 |
. . . . . 6
⊢ 1 ∈
ℝ+ |
48 | 3 | sselda 3917 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) → 𝑦 ∈ ℝ*) |
49 | 48 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*) |
50 | | rpxr 12668 |
. . . . . . . . . 10
⊢ (1 ∈
ℝ+ → 1 ∈ ℝ*) |
51 | 47, 50 | mp1i 13 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈
ℝ*) |
52 | | elbl 23449 |
. . . . . . . . 9
⊢ ((𝐷 ∈
(∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈
ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1))) |
53 | 22, 49, 51, 52 | mp3an2i 1464 |
. . . . . . . 8
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1))) |
54 | | simp2 1135 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ) |
55 | 48 | 3ad2ant1 1131 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*) |
56 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 𝑦 ∈ ℝ*) |
57 | | simpl3l 1226 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 𝑧 ∈ ℝ*) |
58 | | xmetcl 23392 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈
(∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ (𝑦𝐷𝑧) ∈
ℝ*) |
59 | 22, 56, 57, 58 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → (𝑦𝐷𝑧) ∈
ℝ*) |
60 | | 1red 10907 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 1 ∈ ℝ) |
61 | | xmetge0 23405 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐷 ∈
(∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 𝑧 ∈ ℝ*)
→ 0 ≤ (𝑦𝐷𝑧)) |
62 | 22, 56, 57, 61 | mp3an2i 1464 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 0 ≤ (𝑦𝐷𝑧)) |
63 | | simpl3r 1227 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → (𝑦𝐷𝑧) < 1) |
64 | | 1xr 10965 |
. . . . . . . . . . . . . . . . . 18
⊢ 1 ∈
ℝ* |
65 | | xrltle 12812 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈
ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1)) |
66 | 59, 64, 65 | sylancl 585 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1)) |
67 | 63, 66 | mpd 15 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → (𝑦𝐷𝑧) ≤ 1) |
68 | | xrrege0 12837 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈
ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ) |
69 | 59, 60, 62, 67, 68 | syl22anc 835 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → (𝑦𝐷𝑧) ∈ ℝ) |
70 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 𝑦 ≠ 𝑧) |
71 | 21 | xrsdsreclb 20557 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑦 ∈ ℝ*
∧ 𝑧 ∈
ℝ* ∧ 𝑦
≠ 𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))) |
72 | 56, 57, 70, 71 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))) |
73 | 69, 72 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)) |
74 | 73 | simpld 494 |
. . . . . . . . . . . . 13
⊢ ((((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦 ≠ 𝑧) → 𝑦 ∈ ℝ) |
75 | 74 | ex 412 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 ≠ 𝑧 → 𝑦 ∈ ℝ)) |
76 | 75 | necon1bd 2960 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧)) |
77 | | simp1r 1196 |
. . . . . . . . . . . 12
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ 𝑥) |
78 | | elequ1 2115 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥)) |
79 | 77, 78 | syl5ibcom 244 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧 → 𝑧 ∈ 𝑥)) |
80 | 76, 79 | syld 47 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧 ∈ 𝑥)) |
81 | 54, 80 | mpd 15 |
. . . . . . . . 9
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧 ∈ 𝑥) |
82 | 81 | 3expia 1119 |
. . . . . . . 8
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧 ∈ 𝑥)) |
83 | 53, 82 | sylbid 239 |
. . . . . . 7
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧 ∈ 𝑥)) |
84 | 83 | ssrdv 3923 |
. . . . . 6
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥) |
85 | | oveq2 7263 |
. . . . . . . 8
⊢ (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1)) |
86 | 85 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥)) |
87 | 86 | rspcev 3552 |
. . . . . 6
⊢ ((1
∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
88 | 47, 84, 87 | sylancr 586 |
. . . . 5
⊢ (((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
89 | 46, 88 | pm2.61dan 809 |
. . . 4
⊢ ((𝑥 ∈ (ordTop‘ ≤ )
∧ 𝑦 ∈ 𝑥) → ∃𝑟 ∈ ℝ+
(𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
90 | 89 | ralrimiva 3107 |
. . 3
⊢ (𝑥 ∈ (ordTop‘ ≤ )
→ ∀𝑦 ∈
𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥) |
91 | | xrsmopn.1 |
. . . . 5
⊢ 𝐽 = (MetOpen‘𝐷) |
92 | 91 | elmopn2 23506 |
. . . 4
⊢ (𝐷 ∈
(∞Met‘ℝ*) → (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ ℝ* ∧
∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))) |
93 | 22, 92 | ax-mp 5 |
. . 3
⊢ (𝑥 ∈ 𝐽 ↔ (𝑥 ⊆ ℝ* ∧
∀𝑦 ∈ 𝑥 ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)) |
94 | 3, 90, 93 | sylanbrc 582 |
. 2
⊢ (𝑥 ∈ (ordTop‘ ≤ )
→ 𝑥 ∈ 𝐽) |
95 | 94 | ssriv 3921 |
1
⊢
(ordTop‘ ≤ ) ⊆ 𝐽 |