MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsmopn Structured version   Visualization version   GIF version

Theorem xrsmopn 24757
Description: The metric on the extended reals generates a topology, but this does not match the order topology on *; for example {+∞} is open in the metric topology, but not the order topology. However, the metric topology is finer than the order topology, meaning that all open intervals are open in the metric topology. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypotheses
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
xrsmopn.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
xrsmopn (ordTop‘ ≤ ) ⊆ 𝐽

Proof of Theorem xrsmopn
Dummy variables 𝑥 𝑟 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elssuni 4918 . . . 4 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 (ordTop‘ ≤ ))
2 letopuni 23150 . . . 4 * = (ordTop‘ ≤ )
31, 2sseqtrrdi 4005 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥 ⊆ ℝ*)
4 eqid 2736 . . . . . . . 8 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
54rexmet 24735 . . . . . . 7 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ)
6 letop 23149 . . . . . . . . 9 (ordTop‘ ≤ ) ∈ Top
7 reex 11225 . . . . . . . . 9 ℝ ∈ V
8 elrestr 17447 . . . . . . . . 9 (((ordTop‘ ≤ ) ∈ Top ∧ ℝ ∈ V ∧ 𝑥 ∈ (ordTop‘ ≤ )) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
96, 7, 8mp3an12 1453 . . . . . . . 8 (𝑥 ∈ (ordTop‘ ≤ ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
109ad2antrr 726 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ))
11 elin 3947 . . . . . . . . 9 (𝑦 ∈ (𝑥 ∩ ℝ) ↔ (𝑦𝑥𝑦 ∈ ℝ))
1211biimpri 228 . . . . . . . 8 ((𝑦𝑥𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
1312adantll 714 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → 𝑦 ∈ (𝑥 ∩ ℝ))
14 eqid 2736 . . . . . . . . . 10 ((ordTop‘ ≤ ) ↾t ℝ) = ((ordTop‘ ≤ ) ↾t ℝ)
1514xrtgioo 24751 . . . . . . . . 9 (topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
16 eqid 2736 . . . . . . . . . 10 (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ))) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
174, 16tgioo 24740 . . . . . . . . 9 (topGen‘ran (,)) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1815, 17eqtr3i 2761 . . . . . . . 8 ((ordTop‘ ≤ ) ↾t ℝ) = (MetOpen‘((abs ∘ − ) ↾ (ℝ × ℝ)))
1918mopni2 24437 . . . . . . 7 ((((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (∞Met‘ℝ) ∧ (𝑥 ∩ ℝ) ∈ ((ordTop‘ ≤ ) ↾t ℝ) ∧ 𝑦 ∈ (𝑥 ∩ ℝ)) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
205, 10, 13, 19mp3an2i 1468 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ))
21 xrsxmet.1 . . . . . . . . . . . 12 𝐷 = (dist‘ℝ*𝑠)
2221xrsxmet 24754 . . . . . . . . . . 11 𝐷 ∈ (∞Met‘ℝ*)
23 simplr 768 . . . . . . . . . . . 12 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ ℝ)
24 ressxr 11284 . . . . . . . . . . . . 13 ℝ ⊆ ℝ*
25 sseqin2 4203 . . . . . . . . . . . . 13 (ℝ ⊆ ℝ* ↔ (ℝ* ∩ ℝ) = ℝ)
2624, 25mpbi 230 . . . . . . . . . . . 12 (ℝ* ∩ ℝ) = ℝ
2723, 26eleqtrrdi 2846 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑦 ∈ (ℝ* ∩ ℝ))
28 rpxr 13023 . . . . . . . . . . . 12 (𝑟 ∈ ℝ+𝑟 ∈ ℝ*)
2928adantl 481 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ*)
3021xrsdsre 24755 . . . . . . . . . . . . 13 (𝐷 ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
3130eqcomi 2745 . . . . . . . . . . . 12 ((abs ∘ − ) ↾ (ℝ × ℝ)) = (𝐷 ↾ (ℝ × ℝ))
3231blres 24375 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ (ℝ* ∩ ℝ) ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3322, 27, 29, 32mp3an2i 1468 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = ((𝑦(ball‘𝐷)𝑟) ∩ ℝ))
3421xrsblre 24756 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ*) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3528, 34sylan2 593 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
3635adantll 714 . . . . . . . . . . 11 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘𝐷)𝑟) ⊆ ℝ)
37 dfss2 3949 . . . . . . . . . . 11 ((𝑦(ball‘𝐷)𝑟) ⊆ ℝ ↔ ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3836, 37sylib 218 . . . . . . . . . 10 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘𝐷)𝑟) ∩ ℝ) = (𝑦(ball‘𝐷)𝑟))
3933, 38eqtrd 2771 . . . . . . . . 9 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) = (𝑦(ball‘𝐷)𝑟))
4039sseq1d 3995 . . . . . . . 8 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) ↔ (𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ)))
41 inss1 4217 . . . . . . . . 9 (𝑥 ∩ ℝ) ⊆ 𝑥
42 sstr 3972 . . . . . . . . 9 (((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) ∧ (𝑥 ∩ ℝ) ⊆ 𝑥) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4341, 42mpan2 691 . . . . . . . 8 ((𝑦(ball‘𝐷)𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
4440, 43biimtrdi 253 . . . . . . 7 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) ∧ 𝑟 ∈ ℝ+) → ((𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4544reximdva 3154 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → (∃𝑟 ∈ ℝ+ (𝑦(ball‘((abs ∘ − ) ↾ (ℝ × ℝ)))𝑟) ⊆ (𝑥 ∩ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
4620, 45mpd 15 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
47 1rp 13017 . . . . . 6 1 ∈ ℝ+
483sselda 3963 . . . . . . . . . 10 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → 𝑦 ∈ ℝ*)
4948adantr 480 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 𝑦 ∈ ℝ*)
50 rpxr 13023 . . . . . . . . . 10 (1 ∈ ℝ+ → 1 ∈ ℝ*)
5147, 50mp1i 13 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → 1 ∈ ℝ*)
52 elbl 24332 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
5322, 49, 51, 52mp3an2i 1468 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) ↔ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)))
54 simp2 1137 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → ¬ 𝑦 ∈ ℝ)
55483ad2ant1 1133 . . . . . . . . . . . . . . . . . 18 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦 ∈ ℝ*)
5655adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ*)
57 simpl3l 1229 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑧 ∈ ℝ*)
58 xmetcl 24275 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → (𝑦𝐷𝑧) ∈ ℝ*)
5922, 56, 57, 58mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ*)
60 1red 11241 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 1 ∈ ℝ)
61 xmetge0 24288 . . . . . . . . . . . . . . . . 17 ((𝐷 ∈ (∞Met‘ℝ*) ∧ 𝑦 ∈ ℝ*𝑧 ∈ ℝ*) → 0 ≤ (𝑦𝐷𝑧))
6222, 56, 57, 61mp3an2i 1468 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 0 ≤ (𝑦𝐷𝑧))
63 simpl3r 1230 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) < 1)
64 1xr 11299 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ*
65 xrltle 13170 . . . . . . . . . . . . . . . . . 18 (((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ*) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6659, 64, 65sylancl 586 . . . . . . . . . . . . . . . . 17 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) < 1 → (𝑦𝐷𝑧) ≤ 1))
6763, 66mpd 15 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ≤ 1)
68 xrrege0 13195 . . . . . . . . . . . . . . . 16 ((((𝑦𝐷𝑧) ∈ ℝ* ∧ 1 ∈ ℝ) ∧ (0 ≤ (𝑦𝐷𝑧) ∧ (𝑦𝐷𝑧) ≤ 1)) → (𝑦𝐷𝑧) ∈ ℝ)
6959, 60, 62, 67, 68syl22anc 838 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦𝐷𝑧) ∈ ℝ)
70 simpr 484 . . . . . . . . . . . . . . . 16 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦𝑧)
7121xrsdsreclb 21386 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ*𝑧 ∈ ℝ*𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7256, 57, 70, 71syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → ((𝑦𝐷𝑧) ∈ ℝ ↔ (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ)))
7369, 72mpbid 232 . . . . . . . . . . . . . 14 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → (𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ))
7473simpld 494 . . . . . . . . . . . . 13 ((((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) ∧ 𝑦𝑧) → 𝑦 ∈ ℝ)
7574ex 412 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦𝑧𝑦 ∈ ℝ))
7675necon1bd 2951 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑦 = 𝑧))
77 simp1r 1199 . . . . . . . . . . . 12 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑦𝑥)
78 elequ1 2116 . . . . . . . . . . . 12 (𝑦 = 𝑧 → (𝑦𝑥𝑧𝑥))
7977, 78syl5ibcom 245 . . . . . . . . . . 11 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (𝑦 = 𝑧𝑧𝑥))
8076, 79syld 47 . . . . . . . . . 10 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → (¬ 𝑦 ∈ ℝ → 𝑧𝑥))
8154, 80mpd 15 . . . . . . . . 9 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ ∧ (𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1)) → 𝑧𝑥)
82813expia 1121 . . . . . . . 8 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ((𝑧 ∈ ℝ* ∧ (𝑦𝐷𝑧) < 1) → 𝑧𝑥))
8353, 82sylbid 240 . . . . . . 7 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑧 ∈ (𝑦(ball‘𝐷)1) → 𝑧𝑥))
8483ssrdv 3969 . . . . . 6 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → (𝑦(ball‘𝐷)1) ⊆ 𝑥)
85 oveq2 7418 . . . . . . . 8 (𝑟 = 1 → (𝑦(ball‘𝐷)𝑟) = (𝑦(ball‘𝐷)1))
8685sseq1d 3995 . . . . . . 7 (𝑟 = 1 → ((𝑦(ball‘𝐷)𝑟) ⊆ 𝑥 ↔ (𝑦(ball‘𝐷)1) ⊆ 𝑥))
8786rspcev 3606 . . . . . 6 ((1 ∈ ℝ+ ∧ (𝑦(ball‘𝐷)1) ⊆ 𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8847, 84, 87sylancr 587 . . . . 5 (((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) ∧ ¬ 𝑦 ∈ ℝ) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
8946, 88pm2.61dan 812 . . . 4 ((𝑥 ∈ (ordTop‘ ≤ ) ∧ 𝑦𝑥) → ∃𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
9089ralrimiva 3133 . . 3 (𝑥 ∈ (ordTop‘ ≤ ) → ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)
91 xrsmopn.1 . . . . 5 𝐽 = (MetOpen‘𝐷)
9291elmopn2 24389 . . . 4 (𝐷 ∈ (∞Met‘ℝ*) → (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥)))
9322, 92ax-mp 5 . . 3 (𝑥𝐽 ↔ (𝑥 ⊆ ℝ* ∧ ∀𝑦𝑥𝑟 ∈ ℝ+ (𝑦(ball‘𝐷)𝑟) ⊆ 𝑥))
943, 90, 93sylanbrc 583 . 2 (𝑥 ∈ (ordTop‘ ≤ ) → 𝑥𝐽)
9594ssriv 3967 1 (ordTop‘ ≤ ) ⊆ 𝐽
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931   cuni 4888   class class class wbr 5124   × cxp 5657  ran crn 5660  cres 5661  ccom 5663  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135  *cxr 11273   < clt 11274  cle 11275  cmin 11471  +crp 13013  (,)cioo 13367  abscabs 15258  distcds 17285  t crest 17439  topGenctg 17456  ordTopcordt 17518  *𝑠cxrs 17519  ∞Metcxmet 21305  ballcbl 21307  MetOpencmopn 21310  Topctop 22836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-ec 8726  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fi 9428  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ds 17298  df-rest 17441  df-topgen 17462  df-ordt 17520  df-xrs 17521  df-ps 18581  df-tsr 18582  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-top 22837  df-topon 22854  df-bases 22889
This theorem is referenced by:  xmetdcn  24783
  Copyright terms: Public domain W3C validator